非平稳自相似高斯过程作为幂律散粒噪声过程的尺度极限及分数布朗运动的推广

High Frequency Pub Date : 2019-03-13 DOI:10.1002/hf2.10028
Guodong Pang, Murad S. Taqqu
{"title":"非平稳自相似高斯过程作为幂律散粒噪声过程的尺度极限及分数布朗运动的推广","authors":"Guodong Pang,&nbsp;Murad S. Taqqu","doi":"10.1002/hf2.10028","DOIUrl":null,"url":null,"abstract":"<p>We study shot noise processes with Poisson arrivals and nonstationary noises. The noises are conditionally independent given the arrival times, but the distribution of each noise does depend on its arrival time. We establish scaling limits for such shot noise processes in two situations: (a) the conditional variance functions of the noises have a power law and (b) the conditional noise distributions are piecewise. In both cases, the limit processes are self-similar Gaussian with nonstationary increments. Motivated by these processes, we introduce new classes of self-similar Gaussian processes with nonstationary increments, via the time-domain integral representation, which are natural generalizations of fractional Brownian motions.</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 2","pages":"95-112"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10028","citationCount":"17","resultStr":"{\"title\":\"Nonstationary self-similar Gaussian processes as scaling limits of power-law shot noise processes and generalizations of fractional Brownian motion\",\"authors\":\"Guodong Pang,&nbsp;Murad S. Taqqu\",\"doi\":\"10.1002/hf2.10028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study shot noise processes with Poisson arrivals and nonstationary noises. The noises are conditionally independent given the arrival times, but the distribution of each noise does depend on its arrival time. We establish scaling limits for such shot noise processes in two situations: (a) the conditional variance functions of the noises have a power law and (b) the conditional noise distributions are piecewise. In both cases, the limit processes are self-similar Gaussian with nonstationary increments. Motivated by these processes, we introduce new classes of self-similar Gaussian processes with nonstationary increments, via the time-domain integral representation, which are natural generalizations of fractional Brownian motions.</p>\",\"PeriodicalId\":100604,\"journal\":{\"name\":\"High Frequency\",\"volume\":\"2 2\",\"pages\":\"95-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/hf2.10028\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Frequency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

研究了含泊松到达和非平稳噪声的弹态噪声过程。在给定到达时间的情况下,噪声是条件独立的,但每个噪声的分布确实依赖于它的到达时间。我们在两种情况下建立了这种散粒噪声过程的尺度限制:(a)噪声的条件方差函数具有幂律,(b)条件噪声分布是分段的。在这两种情况下,极限过程都是具有非平稳增量的自相似高斯过程。在这些过程的激励下,我们通过时域积分表示引入了具有非平稳增量的自相似高斯过程的新类别,这是分数阶布朗运动的自然推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonstationary self-similar Gaussian processes as scaling limits of power-law shot noise processes and generalizations of fractional Brownian motion

We study shot noise processes with Poisson arrivals and nonstationary noises. The noises are conditionally independent given the arrival times, but the distribution of each noise does depend on its arrival time. We establish scaling limits for such shot noise processes in two situations: (a) the conditional variance functions of the noises have a power law and (b) the conditional noise distributions are piecewise. In both cases, the limit processes are self-similar Gaussian with nonstationary increments. Motivated by these processes, we introduce new classes of self-similar Gaussian processes with nonstationary increments, via the time-domain integral representation, which are natural generalizations of fractional Brownian motions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信