具有长期相关性的时间序列的拟合优度检验

J. Beran
{"title":"具有长期相关性的时间序列的拟合优度检验","authors":"J. Beran","doi":"10.1111/J.2517-6161.1992.TB01448.X","DOIUrl":null,"url":null,"abstract":"We propose a test statistic for goodness of fit in time series with slowly decaying serial correlations. The asymptotic distribution of the test statistic, originally proposed by Milhoj for time series with smooth spectra, turns out to be the same, under the null hypothesis, even if the spectrum has a pole at 0. In particular, the test is suitable to detect lack of independence in the observations, or estimated residuals, if the first few correlations are small but the decay of the correlations is slow","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"14 1","pages":"749-760"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"A Goodness‐Of‐Fit Test for Time Series with Long Range Dependence\",\"authors\":\"J. Beran\",\"doi\":\"10.1111/J.2517-6161.1992.TB01448.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a test statistic for goodness of fit in time series with slowly decaying serial correlations. The asymptotic distribution of the test statistic, originally proposed by Milhoj for time series with smooth spectra, turns out to be the same, under the null hypothesis, even if the spectrum has a pole at 0. In particular, the test is suitable to detect lack of independence in the observations, or estimated residuals, if the first few correlations are small but the decay of the correlations is slow\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"14 1\",\"pages\":\"749-760\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1992.TB01448.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1992.TB01448.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

我们提出了一个检验统计量,用于序列相关性缓慢衰减的时间序列的拟合优度。Milhoj最初提出的光滑谱时间序列的检验统计量的渐近分布在零假设下是相同的,即使谱在0处有极点。特别是,如果前几个相关性很小,但相关性衰减缓慢,则该测试适用于检测观测值或估计残差中缺乏独立性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Goodness‐Of‐Fit Test for Time Series with Long Range Dependence
We propose a test statistic for goodness of fit in time series with slowly decaying serial correlations. The asymptotic distribution of the test statistic, originally proposed by Milhoj for time series with smooth spectra, turns out to be the same, under the null hypothesis, even if the spectrum has a pole at 0. In particular, the test is suitable to detect lack of independence in the observations, or estimated residuals, if the first few correlations are small but the decay of the correlations is slow
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信