{"title":"星形的矩阵表示","authors":"Mohamed Moktar Chaffar","doi":"10.37421/2168-9679.2020.9.448","DOIUrl":null,"url":null,"abstract":"In the present paper we define an oriented Star with ??α coefficient α 1 and we further develop the procedure for finding eigenvalues and eigenvectors for an (5 × 5) Starmatrix directly or (5 × 5) Star-matrix indirectly. we give an overview of the methods to compute matrix-multiplication of a Star ??α (generally square 5 × 5) with particular emphasis on the oriented matrix","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"190 7 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Representation of a Star\",\"authors\":\"Mohamed Moktar Chaffar\",\"doi\":\"10.37421/2168-9679.2020.9.448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we define an oriented Star with ??α coefficient α 1 and we further develop the procedure for finding eigenvalues and eigenvectors for an (5 × 5) Starmatrix directly or (5 × 5) Star-matrix indirectly. we give an overview of the methods to compute matrix-multiplication of a Star ??α (generally square 5 × 5) with particular emphasis on the oriented matrix\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"190 7 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37421/2168-9679.2020.9.448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37421/2168-9679.2020.9.448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the present paper we define an oriented Star with ??α coefficient α 1 and we further develop the procedure for finding eigenvalues and eigenvectors for an (5 × 5) Starmatrix directly or (5 × 5) Star-matrix indirectly. we give an overview of the methods to compute matrix-multiplication of a Star ??α (generally square 5 × 5) with particular emphasis on the oriented matrix