永磁体拓扑优化的快速有限差分算法

C. Abert, C. Huber, F. Bruckner, C. Vogler, G. Wautischer, D. Suess
{"title":"永磁体拓扑优化的快速有限差分算法","authors":"C. Abert, C. Huber, F. Bruckner, C. Vogler, G. Wautischer, D. Suess","doi":"10.1063/1.4998532","DOIUrl":null,"url":null,"abstract":"We present a finite-difference method for the topology optimization of permanent magnets that is based on the FFT accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparsion to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A fast finite-difference algorithm for topology optimization of permanent magnets\",\"authors\":\"C. Abert, C. Huber, F. Bruckner, C. Vogler, G. Wautischer, D. Suess\",\"doi\":\"10.1063/1.4998532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a finite-difference method for the topology optimization of permanent magnets that is based on the FFT accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparsion to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.4998532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4998532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种基于FFT加速失散场计算的永磁体拓扑优化有限差分方法。该方法采用密度法进行拓扑优化,采用伴随法进行梯度计算。与各种最先进的有限元实现相比,显示出优越的性能和精度。此外,由于可以使用各种预先存在的FFT杂散场实现,因此所提出的方法非常灵活且易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast finite-difference algorithm for topology optimization of permanent magnets
We present a finite-difference method for the topology optimization of permanent magnets that is based on the FFT accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparsion to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信