{"title":"权模的狄拉克上同调和正交关系","authors":"Jing Huang, W. Xiao","doi":"10.2140/pjm.2022.319.129","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{g}$ be a reductive Lie algebra over $\\mathbb{C}$. For any simple weight module of $\\mathfrak{g}$ with finite-dimensional weight spaces, we show that its Dirac cohomology is vanished unless it is a highest weight module. This completes the calculation of Dirac cohomology for simple weight modules since the Dirac cohomology of simple highest weight modules was carried out in our previous work. We also show that the Dirac index pairing of two weight modules which have infinitesimal characters agrees with their Euler-Poincar\\'{e} pairing. The analogue of this result for Harish-Chandra modules is a consequence of the Kazhdan's orthogonality conjecture which was settled by the first named author and Binyong Sun.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac cohomology and orthogonality relations for weight modules\",\"authors\":\"Jing Huang, W. Xiao\",\"doi\":\"10.2140/pjm.2022.319.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak{g}$ be a reductive Lie algebra over $\\\\mathbb{C}$. For any simple weight module of $\\\\mathfrak{g}$ with finite-dimensional weight spaces, we show that its Dirac cohomology is vanished unless it is a highest weight module. This completes the calculation of Dirac cohomology for simple weight modules since the Dirac cohomology of simple highest weight modules was carried out in our previous work. We also show that the Dirac index pairing of two weight modules which have infinitesimal characters agrees with their Euler-Poincar\\\\'{e} pairing. The analogue of this result for Harish-Chandra modules is a consequence of the Kazhdan's orthogonality conjecture which was settled by the first named author and Binyong Sun.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.319.129\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.319.129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dirac cohomology and orthogonality relations for weight modules
Let $\mathfrak{g}$ be a reductive Lie algebra over $\mathbb{C}$. For any simple weight module of $\mathfrak{g}$ with finite-dimensional weight spaces, we show that its Dirac cohomology is vanished unless it is a highest weight module. This completes the calculation of Dirac cohomology for simple weight modules since the Dirac cohomology of simple highest weight modules was carried out in our previous work. We also show that the Dirac index pairing of two weight modules which have infinitesimal characters agrees with their Euler-Poincar\'{e} pairing. The analogue of this result for Harish-Chandra modules is a consequence of the Kazhdan's orthogonality conjecture which was settled by the first named author and Binyong Sun.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.