{"title":"风险厌恶的谢普瓮的最优停站","authors":"Robert W. Chen, I. Grigorescu, Min Kang","doi":"10.1080/17442508.2014.995660","DOIUrl":null,"url":null,"abstract":"An (m,p) urn contains m balls of value − 1 and p balls of value +1. A player starts with fortune k and in each game draws a ball without replacement with the fortune increasing by one unit if the ball is positive and decreasing by one unit if the ball is negative, having to stop when k = 0 (risk aversion). Let V(m,p,k) be the expected value of the game. We are studying the question of the minimum k such that the net gain function of the game V(m,p,k) − k is positive, in both the discrete and the continuous (Brownian bridge) settings. Monotonicity in various parameters m, p, k is established for both the value and the net gain functions of the game. For the cut-off value k, since the case m − p < 0 is trivial, for p → ∞, either , when the gain function cannot be positive, or , when it is sufficient to have , where α is a constant. We also determine an approximate optimal strategy with exponentially small probability of failure in terms of p. The problem goes back to Shepp [8], who determined the constant α in the unrestricted case when the net gain does not depend on k. A new proof of his result is given in the continuous setting.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"120 1","pages":"702 - 722"},"PeriodicalIF":0.8000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal stopping for Shepp's urn with risk aversion\",\"authors\":\"Robert W. Chen, I. Grigorescu, Min Kang\",\"doi\":\"10.1080/17442508.2014.995660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An (m,p) urn contains m balls of value − 1 and p balls of value +1. A player starts with fortune k and in each game draws a ball without replacement with the fortune increasing by one unit if the ball is positive and decreasing by one unit if the ball is negative, having to stop when k = 0 (risk aversion). Let V(m,p,k) be the expected value of the game. We are studying the question of the minimum k such that the net gain function of the game V(m,p,k) − k is positive, in both the discrete and the continuous (Brownian bridge) settings. Monotonicity in various parameters m, p, k is established for both the value and the net gain functions of the game. For the cut-off value k, since the case m − p < 0 is trivial, for p → ∞, either , when the gain function cannot be positive, or , when it is sufficient to have , where α is a constant. We also determine an approximate optimal strategy with exponentially small probability of failure in terms of p. The problem goes back to Shepp [8], who determined the constant α in the unrestricted case when the net gain does not depend on k. A new proof of his result is given in the continuous setting.\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"120 1\",\"pages\":\"702 - 722\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2015-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.995660\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.995660","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal stopping for Shepp's urn with risk aversion
An (m,p) urn contains m balls of value − 1 and p balls of value +1. A player starts with fortune k and in each game draws a ball without replacement with the fortune increasing by one unit if the ball is positive and decreasing by one unit if the ball is negative, having to stop when k = 0 (risk aversion). Let V(m,p,k) be the expected value of the game. We are studying the question of the minimum k such that the net gain function of the game V(m,p,k) − k is positive, in both the discrete and the continuous (Brownian bridge) settings. Monotonicity in various parameters m, p, k is established for both the value and the net gain functions of the game. For the cut-off value k, since the case m − p < 0 is trivial, for p → ∞, either , when the gain function cannot be positive, or , when it is sufficient to have , where α is a constant. We also determine an approximate optimal strategy with exponentially small probability of failure in terms of p. The problem goes back to Shepp [8], who determined the constant α in the unrestricted case when the net gain does not depend on k. A new proof of his result is given in the continuous setting.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.