SO-HandNet:基于半监督学习的三维手部姿态估计自组织网络

Yujin Chen, Zhigang Tu, Liuhao Ge, Dejun Zhang, Ruizhi Chen, Junsong Yuan
{"title":"SO-HandNet:基于半监督学习的三维手部姿态估计自组织网络","authors":"Yujin Chen, Zhigang Tu, Liuhao Ge, Dejun Zhang, Ruizhi Chen, Junsong Yuan","doi":"10.1109/ICCV.2019.00706","DOIUrl":null,"url":null,"abstract":"3D hand pose estimation has made significant progress recently, where Convolutional Neural Networks (CNNs) play a critical role. However, most of the existing CNN-based hand pose estimation methods depend much on the training set, while labeling 3D hand pose on training data is laborious and time-consuming. Inspired by the point cloud autoencoder presented in self-organizing network (SO-Net), our proposed SO-HandNet aims at making use of the unannotated data to obtain accurate 3D hand pose estimation in a semi-supervised manner. We exploit hand feature encoder (HFE) to extract multi-level features from hand point cloud and then fuse them to regress 3D hand pose by a hand pose estimator (HPE). We design a hand feature decoder (HFD) to recover the input point cloud from the encoded feature. Since the HFE and the HFD can be trained without 3D hand pose annotation, the proposed method is able to make the best of unannotated data during the training phase. Experiments on four challenging benchmark datasets validate that our proposed SO-HandNet can achieve superior performance for 3D hand pose estimation via semi-supervised learning.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"6 1","pages":"6960-6969"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"SO-HandNet: Self-Organizing Network for 3D Hand Pose Estimation With Semi-Supervised Learning\",\"authors\":\"Yujin Chen, Zhigang Tu, Liuhao Ge, Dejun Zhang, Ruizhi Chen, Junsong Yuan\",\"doi\":\"10.1109/ICCV.2019.00706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D hand pose estimation has made significant progress recently, where Convolutional Neural Networks (CNNs) play a critical role. However, most of the existing CNN-based hand pose estimation methods depend much on the training set, while labeling 3D hand pose on training data is laborious and time-consuming. Inspired by the point cloud autoencoder presented in self-organizing network (SO-Net), our proposed SO-HandNet aims at making use of the unannotated data to obtain accurate 3D hand pose estimation in a semi-supervised manner. We exploit hand feature encoder (HFE) to extract multi-level features from hand point cloud and then fuse them to regress 3D hand pose by a hand pose estimator (HPE). We design a hand feature decoder (HFD) to recover the input point cloud from the encoded feature. Since the HFE and the HFD can be trained without 3D hand pose annotation, the proposed method is able to make the best of unannotated data during the training phase. Experiments on four challenging benchmark datasets validate that our proposed SO-HandNet can achieve superior performance for 3D hand pose estimation via semi-supervised learning.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"6 1\",\"pages\":\"6960-6969\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

三维手部姿态估计近年来取得了重大进展,其中卷积神经网络(cnn)发挥了关键作用。然而,现有的基于cnn的手部姿态估计方法大多依赖于训练集,而在训练数据上标注三维手部姿态既费力又耗时。受自组织网络(SO-Net)中点云自动编码器的启发,我们提出的SO-HandNet旨在利用未注释的数据以半监督的方式获得准确的三维手部姿态估计。利用手部特征编码器(HFE)从手部点云中提取多层次特征,然后通过手部姿态估计器(HPE)将这些特征融合到三维手部姿态回归中。我们设计了一个手部特征解码器(HFD)来从编码特征中恢复输入点云。由于HFE和HFD可以在没有三维手姿注释的情况下进行训练,因此该方法能够在训练阶段充分利用未注释的数据。在四个具有挑战性的基准数据集上进行的实验验证了我们提出的SO-HandNet通过半监督学习可以获得优异的3D手部姿态估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SO-HandNet: Self-Organizing Network for 3D Hand Pose Estimation With Semi-Supervised Learning
3D hand pose estimation has made significant progress recently, where Convolutional Neural Networks (CNNs) play a critical role. However, most of the existing CNN-based hand pose estimation methods depend much on the training set, while labeling 3D hand pose on training data is laborious and time-consuming. Inspired by the point cloud autoencoder presented in self-organizing network (SO-Net), our proposed SO-HandNet aims at making use of the unannotated data to obtain accurate 3D hand pose estimation in a semi-supervised manner. We exploit hand feature encoder (HFE) to extract multi-level features from hand point cloud and then fuse them to regress 3D hand pose by a hand pose estimator (HPE). We design a hand feature decoder (HFD) to recover the input point cloud from the encoded feature. Since the HFE and the HFD can be trained without 3D hand pose annotation, the proposed method is able to make the best of unannotated data during the training phase. Experiments on four challenging benchmark datasets validate that our proposed SO-HandNet can achieve superior performance for 3D hand pose estimation via semi-supervised learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信