Norbert Martínez-Bazan, Miquel Angel Aguila-Lorente, V. Muntés-Mulero, David Dominguez-Sal, S. Gómez-Villamor, J. Larriba-Pey
{"title":"基于位图索引的高效图形管理","authors":"Norbert Martínez-Bazan, Miquel Angel Aguila-Lorente, V. Muntés-Mulero, David Dominguez-Sal, S. Gómez-Villamor, J. Larriba-Pey","doi":"10.1145/2351476.2351489","DOIUrl":null,"url":null,"abstract":"The increasing amount of graph like data from social networks, science and the web has grown an interest in analyzing the relationships between different entities. New specialized solutions in the form of graph databases, which are generic and able to adapt to any schema as an alternative to RDBMS, have appeared to manage attributed multigraphs efficiently. In this paper, we describe the internals of DEX graph database, which is based on a representation of the graph and its attributes as maps and bitmap structures that can be loaded and unloaded efficiently from memory. We also present the internal operations used in DEX to manipulate these structures. We show that by using these structures, DEX scales to graphs with billions of vertices and edges with very limited memory requirements. Finally, we compare our graph-oriented approach to other approaches showing that our system is better suited for out-of-core typical graph-like operations.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"101 1","pages":"110-119"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Efficient graph management based on bitmap indices\",\"authors\":\"Norbert Martínez-Bazan, Miquel Angel Aguila-Lorente, V. Muntés-Mulero, David Dominguez-Sal, S. Gómez-Villamor, J. Larriba-Pey\",\"doi\":\"10.1145/2351476.2351489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing amount of graph like data from social networks, science and the web has grown an interest in analyzing the relationships between different entities. New specialized solutions in the form of graph databases, which are generic and able to adapt to any schema as an alternative to RDBMS, have appeared to manage attributed multigraphs efficiently. In this paper, we describe the internals of DEX graph database, which is based on a representation of the graph and its attributes as maps and bitmap structures that can be loaded and unloaded efficiently from memory. We also present the internal operations used in DEX to manipulate these structures. We show that by using these structures, DEX scales to graphs with billions of vertices and edges with very limited memory requirements. Finally, we compare our graph-oriented approach to other approaches showing that our system is better suited for out-of-core typical graph-like operations.\",\"PeriodicalId\":93615,\"journal\":{\"name\":\"Proceedings. International Database Engineering and Applications Symposium\",\"volume\":\"101 1\",\"pages\":\"110-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Database Engineering and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2351476.2351489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2351476.2351489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient graph management based on bitmap indices
The increasing amount of graph like data from social networks, science and the web has grown an interest in analyzing the relationships between different entities. New specialized solutions in the form of graph databases, which are generic and able to adapt to any schema as an alternative to RDBMS, have appeared to manage attributed multigraphs efficiently. In this paper, we describe the internals of DEX graph database, which is based on a representation of the graph and its attributes as maps and bitmap structures that can be loaded and unloaded efficiently from memory. We also present the internal operations used in DEX to manipulate these structures. We show that by using these structures, DEX scales to graphs with billions of vertices and edges with very limited memory requirements. Finally, we compare our graph-oriented approach to other approaches showing that our system is better suited for out-of-core typical graph-like operations.