{"title":"海森堡群上凸函数的二阶导数","authors":"C. E. Gutiérrez, A. Montanari","doi":"10.2422/2036-2145.2004.2.03","DOIUrl":null,"url":null,"abstract":"In the Euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous H-convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for the class of continuous H-convex functions in the Heisenberg group.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"30 1","pages":"349-366"},"PeriodicalIF":1.2000,"publicationDate":"2003-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"On the second order derivatives of convex functions on the Heisenberg group\",\"authors\":\"C. E. Gutiérrez, A. Montanari\",\"doi\":\"10.2422/2036-2145.2004.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous H-convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for the class of continuous H-convex functions in the Heisenberg group.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"30 1\",\"pages\":\"349-366\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2003-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.2004.2.03\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2004.2.03","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the second order derivatives of convex functions on the Heisenberg group
In the Euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous H-convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for the class of continuous H-convex functions in the Heisenberg group.
期刊介绍:
The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication.
The Annals of the Normale Scuola di Pisa - Science Class is published quarterly
Soft cover, 17x24