{"title":"Langevin方程,Fokker-Planck方程和模型无关的经典等离子体的熵分析","authors":"Kendra Jean Jacques, Preet Sharma","doi":"10.1142/s2424942421500043","DOIUrl":null,"url":null,"abstract":"Plasma dynamics have been studied extensively and there is a fair amount of understanding where the scientific community has reached at. However, there is still a very big gap in completely explaining plasma physics at the classical as well as the quantum level. The dynamics of plasma from an entropic approach are not very well understood or explained. There is too much chaos to account for and even a small deviation in terms of perturbations of any kind makes a sizeable difference. This study is based on the entropic approach where we take a model independent classical plasma. Then we apply Langevin equations and Fokker–Planck equations to explain the entropy generated and entropy produced. Then we study various conditions in which we apply an electric field and a magnetic field and understand the various trends in entropy changes. When we apply the electric field and the magnetic fields independently of each other and together in the plasma model, we see that there is a very important change in the increase in entropy. There are also changes in the plasma flow, but the overall flow does not drastically change since we have considered a model independent plasma. Finally, we show that there are indeed changes to the entropy in a model-independent classical plasma in the various cases as mentioned in this study.","PeriodicalId":52944,"journal":{"name":"Reports in Advances of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Langevin Equations, Fokker–Planck Equations and Entropic Analysis of a Model-Independent Classical Plasma\",\"authors\":\"Kendra Jean Jacques, Preet Sharma\",\"doi\":\"10.1142/s2424942421500043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasma dynamics have been studied extensively and there is a fair amount of understanding where the scientific community has reached at. However, there is still a very big gap in completely explaining plasma physics at the classical as well as the quantum level. The dynamics of plasma from an entropic approach are not very well understood or explained. There is too much chaos to account for and even a small deviation in terms of perturbations of any kind makes a sizeable difference. This study is based on the entropic approach where we take a model independent classical plasma. Then we apply Langevin equations and Fokker–Planck equations to explain the entropy generated and entropy produced. Then we study various conditions in which we apply an electric field and a magnetic field and understand the various trends in entropy changes. When we apply the electric field and the magnetic fields independently of each other and together in the plasma model, we see that there is a very important change in the increase in entropy. There are also changes in the plasma flow, but the overall flow does not drastically change since we have considered a model independent plasma. Finally, we show that there are indeed changes to the entropy in a model-independent classical plasma in the various cases as mentioned in this study.\",\"PeriodicalId\":52944,\"journal\":{\"name\":\"Reports in Advances of Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports in Advances of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424942421500043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports in Advances of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424942421500043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Langevin Equations, Fokker–Planck Equations and Entropic Analysis of a Model-Independent Classical Plasma
Plasma dynamics have been studied extensively and there is a fair amount of understanding where the scientific community has reached at. However, there is still a very big gap in completely explaining plasma physics at the classical as well as the quantum level. The dynamics of plasma from an entropic approach are not very well understood or explained. There is too much chaos to account for and even a small deviation in terms of perturbations of any kind makes a sizeable difference. This study is based on the entropic approach where we take a model independent classical plasma. Then we apply Langevin equations and Fokker–Planck equations to explain the entropy generated and entropy produced. Then we study various conditions in which we apply an electric field and a magnetic field and understand the various trends in entropy changes. When we apply the electric field and the magnetic fields independently of each other and together in the plasma model, we see that there is a very important change in the increase in entropy. There are also changes in the plasma flow, but the overall flow does not drastically change since we have considered a model independent plasma. Finally, we show that there are indeed changes to the entropy in a model-independent classical plasma in the various cases as mentioned in this study.