{"title":"用于灵敏电化学免疫传感的金纳米颗粒掺杂聚电解质多层膜","authors":"Weihua Hu, C. M. Li","doi":"10.1142/S0219607710000620","DOIUrl":null,"url":null,"abstract":"Reported was a novel amperometric immunosensor based on layer-by-layer (LbL) assembled polyethylenimine/gold nanoparticles/poly (acrylic acid) (PEI/AuNPs/PAA) multilayer. The assembly process was in situ monitored by surface plasmon resonance (SPR) technique. Anti-goat IgG as a capture antibody was covalently immobilized on the outermost PAA layer of the multilayer to construct an immunosensor. A target protein, goat IgG was electrochemically detected with alkaline phosphatase-conjugated anti-goat IgG (ALP-anti-goat IgG) as a recognition antibody. Electrochemical investigations suggest that the incorporation of AuNPs facilitates the electron transfer between the underlying electrode and the redox species in solution, and thus enhances the electrochemical signals and in turn improves the immunosensing performance. A detection limit of 100 pg mL-1 with a dynamic range of five orders of magnitude was achieved. Due to the protein-friendly environment and the protein resistance of the polyelectrolyte multilayer, the resulting immunosensor demonstrates excellent storage stability, satisfying assay specificity.","PeriodicalId":80753,"journal":{"name":"Bulletin - Cosmos Club. Cosmos Club (Washington, D.C.)","volume":"5 1","pages":"197-205"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GOLD NANOPARTICLE-INCORPORATED POLYELECTROLYTE MULTILAYER FOR SENSITIVE ELECTROCHEMICAL IMMUNOSENSING\",\"authors\":\"Weihua Hu, C. M. Li\",\"doi\":\"10.1142/S0219607710000620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reported was a novel amperometric immunosensor based on layer-by-layer (LbL) assembled polyethylenimine/gold nanoparticles/poly (acrylic acid) (PEI/AuNPs/PAA) multilayer. The assembly process was in situ monitored by surface plasmon resonance (SPR) technique. Anti-goat IgG as a capture antibody was covalently immobilized on the outermost PAA layer of the multilayer to construct an immunosensor. A target protein, goat IgG was electrochemically detected with alkaline phosphatase-conjugated anti-goat IgG (ALP-anti-goat IgG) as a recognition antibody. Electrochemical investigations suggest that the incorporation of AuNPs facilitates the electron transfer between the underlying electrode and the redox species in solution, and thus enhances the electrochemical signals and in turn improves the immunosensing performance. A detection limit of 100 pg mL-1 with a dynamic range of five orders of magnitude was achieved. Due to the protein-friendly environment and the protein resistance of the polyelectrolyte multilayer, the resulting immunosensor demonstrates excellent storage stability, satisfying assay specificity.\",\"PeriodicalId\":80753,\"journal\":{\"name\":\"Bulletin - Cosmos Club. Cosmos Club (Washington, D.C.)\",\"volume\":\"5 1\",\"pages\":\"197-205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin - Cosmos Club. Cosmos Club (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219607710000620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin - Cosmos Club. Cosmos Club (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219607710000620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GOLD NANOPARTICLE-INCORPORATED POLYELECTROLYTE MULTILAYER FOR SENSITIVE ELECTROCHEMICAL IMMUNOSENSING
Reported was a novel amperometric immunosensor based on layer-by-layer (LbL) assembled polyethylenimine/gold nanoparticles/poly (acrylic acid) (PEI/AuNPs/PAA) multilayer. The assembly process was in situ monitored by surface plasmon resonance (SPR) technique. Anti-goat IgG as a capture antibody was covalently immobilized on the outermost PAA layer of the multilayer to construct an immunosensor. A target protein, goat IgG was electrochemically detected with alkaline phosphatase-conjugated anti-goat IgG (ALP-anti-goat IgG) as a recognition antibody. Electrochemical investigations suggest that the incorporation of AuNPs facilitates the electron transfer between the underlying electrode and the redox species in solution, and thus enhances the electrochemical signals and in turn improves the immunosensing performance. A detection limit of 100 pg mL-1 with a dynamic range of five orders of magnitude was achieved. Due to the protein-friendly environment and the protein resistance of the polyelectrolyte multilayer, the resulting immunosensor demonstrates excellent storage stability, satisfying assay specificity.