基于FPGA/ gpu的频繁项集挖掘加速:综述

Lázaro Bustio-Martínez, R. Cumplido, Martín Letras, Raudel Hernández-León, C. Feregrino-Uribe, José Hernández-Palancar
{"title":"基于FPGA/ gpu的频繁项集挖掘加速:综述","authors":"Lázaro Bustio-Martínez, R. Cumplido, Martín Letras, Raudel Hernández-León, C. Feregrino-Uribe, José Hernández-Palancar","doi":"10.1145/3472289","DOIUrl":null,"url":null,"abstract":"In data mining, Frequent Itemsets Mining is a technique used in several domains with notable results. However, the large volume of data in modern datasets increases the processing time of Frequent Itemset Mining algorithms, making them unsuitable for many real-world applications. Accordingly, proposing new methods for Frequent Itemset Mining to obtain frequent itemsets in a realistic amount of time is still an open problem. A successful alternative is to employ hardware acceleration using Graphics Processing Units (GPU) and Field Programmable Gates Arrays (FPGA). In this article, a comprehensive review of the state of the art of Frequent Itemsets Mining hardware acceleration is presented. Several approaches (FPGA and GPU based) were contrasted to show their weaknesses and strengths. This survey gathers the most relevant and the latest research efforts for improving the performance of Frequent Itemsets Mining regarding algorithms advances and modern development platforms. Furthermore, this survey organizes the current research on Frequent Itemsets Mining from the hardware perspective considering the source of the data, the development platform, and the baseline algorithm.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"82 1","pages":"1 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"FPGA/GPU-based Acceleration for Frequent Itemsets Mining: A Comprehensive Review\",\"authors\":\"Lázaro Bustio-Martínez, R. Cumplido, Martín Letras, Raudel Hernández-León, C. Feregrino-Uribe, José Hernández-Palancar\",\"doi\":\"10.1145/3472289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining, Frequent Itemsets Mining is a technique used in several domains with notable results. However, the large volume of data in modern datasets increases the processing time of Frequent Itemset Mining algorithms, making them unsuitable for many real-world applications. Accordingly, proposing new methods for Frequent Itemset Mining to obtain frequent itemsets in a realistic amount of time is still an open problem. A successful alternative is to employ hardware acceleration using Graphics Processing Units (GPU) and Field Programmable Gates Arrays (FPGA). In this article, a comprehensive review of the state of the art of Frequent Itemsets Mining hardware acceleration is presented. Several approaches (FPGA and GPU based) were contrasted to show their weaknesses and strengths. This survey gathers the most relevant and the latest research efforts for improving the performance of Frequent Itemsets Mining regarding algorithms advances and modern development platforms. Furthermore, this survey organizes the current research on Frequent Itemsets Mining from the hardware perspective considering the source of the data, the development platform, and the baseline algorithm.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"82 1\",\"pages\":\"1 - 35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3472289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在数据挖掘中,频繁项集挖掘是一种应用于多个领域并取得显著成果的技术。然而,现代数据集中的大量数据增加了频繁项集挖掘算法的处理时间,使其不适合许多实际应用。因此,提出新的频繁项集挖掘方法以在实际时间内获得频繁项集仍然是一个有待解决的问题。一个成功的替代方案是使用图形处理单元(GPU)和现场可编程门阵列(FPGA)采用硬件加速。本文全面回顾了频繁项集挖掘硬件加速技术的发展现状。对比了几种方法(基于FPGA和基于GPU)的优缺点。本调查收集了最相关和最新的研究成果,以提高频繁项集挖掘的性能,涉及算法进步和现代开发平台。此外,本调查还从硬件角度组织了频繁项集挖掘的研究现状,考虑了数据的来源、开发平台和基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA/GPU-based Acceleration for Frequent Itemsets Mining: A Comprehensive Review
In data mining, Frequent Itemsets Mining is a technique used in several domains with notable results. However, the large volume of data in modern datasets increases the processing time of Frequent Itemset Mining algorithms, making them unsuitable for many real-world applications. Accordingly, proposing new methods for Frequent Itemset Mining to obtain frequent itemsets in a realistic amount of time is still an open problem. A successful alternative is to employ hardware acceleration using Graphics Processing Units (GPU) and Field Programmable Gates Arrays (FPGA). In this article, a comprehensive review of the state of the art of Frequent Itemsets Mining hardware acceleration is presented. Several approaches (FPGA and GPU based) were contrasted to show their weaknesses and strengths. This survey gathers the most relevant and the latest research efforts for improving the performance of Frequent Itemsets Mining regarding algorithms advances and modern development platforms. Furthermore, this survey organizes the current research on Frequent Itemsets Mining from the hardware perspective considering the source of the data, the development platform, and the baseline algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信