两相流模型几种完全三次律的比较

Gloria Faccanoni, Bérénice Grec
{"title":"两相流模型几种完全三次律的比较","authors":"Gloria Faccanoni, Bérénice Grec","doi":"10.1051/proc/202372117","DOIUrl":null,"url":null,"abstract":"In the present paper, we investigate several cubic equations of state widely used in the literature, for which we are able to construct analytically the complete law. In order to describe two-phase flows, we use Maxwell's construction, which amounts to consider pure phases and a mixture zone at saturation. The parameters appearing in the different equations of state are fitted in order to be precise in the saturation zone at high pressures. The different laws are then compared in a large range of pressures, showing the best accuracy of Clausius equation of state.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of several complete cubic laws for two-phase flow models\",\"authors\":\"Gloria Faccanoni, Bérénice Grec\",\"doi\":\"10.1051/proc/202372117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we investigate several cubic equations of state widely used in the literature, for which we are able to construct analytically the complete law. In order to describe two-phase flows, we use Maxwell's construction, which amounts to consider pure phases and a mixture zone at saturation. The parameters appearing in the different equations of state are fitted in order to be precise in the saturation zone at high pressures. The different laws are then compared in a large range of pressures, showing the best accuracy of Clausius equation of state.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202372117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202372117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了文献中广泛使用的几种三次状态方程,对于它们我们可以解析地构造完备律。为了描述两相流,我们使用麦克斯韦构造,这相当于考虑纯相和饱和时的混合区。对不同状态方程中的参数进行了拟合,以便在高压下的饱和区得到精确的拟合结果。然后在较大的压力范围内比较不同的定律,显示出克劳修斯状态方程的最佳精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of several complete cubic laws for two-phase flow models
In the present paper, we investigate several cubic equations of state widely used in the literature, for which we are able to construct analytically the complete law. In order to describe two-phase flows, we use Maxwell's construction, which amounts to consider pure phases and a mixture zone at saturation. The parameters appearing in the different equations of state are fitted in order to be precise in the saturation zone at high pressures. The different laws are then compared in a large range of pressures, showing the best accuracy of Clausius equation of state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信