一般多边形网格上二维分数阶索方程的虚元法

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Jixiao Guo, Yanping Chen, Jianwei Zhou, Yuanfei Huang
{"title":"一般多边形网格上二维分数阶索方程的虚元法","authors":"Jixiao Guo, Yanping Chen, Jianwei Zhou, Yuanfei Huang","doi":"10.1080/00207160.2023.2248288","DOIUrl":null,"url":null,"abstract":"In this paper, the conforming virtual element method (VEM) is considered to solve the two-dimensional fractional cable equation involving two Riemann–Liouville fractional derivatives. We adopt the Backward Euler Method and the classical scheme for the numerical discrete scheme of the time derivative. Meanwhile, the conforming VEM, which is generated for arbitrary order of accuracy and the arbitrary polygonal meshes, is analysed for the discretization of the spatial direction. Based on the energy projection operator, the fully discrete formula is proved to be unconditionally stable, and the optimal convergence results are derived with regard to the -norm in detail. Finally, some numerical experiments are implemented to verify the theoretical results.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The virtual element method for solving two-dimensional fractional cable equation on general polygonal meshes\",\"authors\":\"Jixiao Guo, Yanping Chen, Jianwei Zhou, Yuanfei Huang\",\"doi\":\"10.1080/00207160.2023.2248288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the conforming virtual element method (VEM) is considered to solve the two-dimensional fractional cable equation involving two Riemann–Liouville fractional derivatives. We adopt the Backward Euler Method and the classical scheme for the numerical discrete scheme of the time derivative. Meanwhile, the conforming VEM, which is generated for arbitrary order of accuracy and the arbitrary polygonal meshes, is analysed for the discretization of the spatial direction. Based on the energy projection operator, the fully discrete formula is proved to be unconditionally stable, and the optimal convergence results are derived with regard to the -norm in detail. Finally, some numerical experiments are implemented to verify the theoretical results.\",\"PeriodicalId\":13911,\"journal\":{\"name\":\"International Journal of Computer Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2248288\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2248288","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文采用符合虚元法求解含有两个Riemann-Liouville分数阶导数的二维分数阶索方程。时间导数的数值离散格式采用后向欧拉法和经典格式。同时,对任意精度阶数和任意多边形网格生成的符合矢量模型进行了空间方向离散化分析。基于能量投影算子,证明了该全离散公式是无条件稳定的,并详细地推导了关于-范数的最优收敛结果。最后通过数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The virtual element method for solving two-dimensional fractional cable equation on general polygonal meshes
In this paper, the conforming virtual element method (VEM) is considered to solve the two-dimensional fractional cable equation involving two Riemann–Liouville fractional derivatives. We adopt the Backward Euler Method and the classical scheme for the numerical discrete scheme of the time derivative. Meanwhile, the conforming VEM, which is generated for arbitrary order of accuracy and the arbitrary polygonal meshes, is analysed for the discretization of the spatial direction. Based on the energy projection operator, the fully discrete formula is proved to be unconditionally stable, and the optimal convergence results are derived with regard to the -norm in detail. Finally, some numerical experiments are implemented to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
72
审稿时长
5 months
期刊介绍: International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering. IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include: • Numerical solutions of systems of partial differential equations • Numerical solution of systems or of multi-dimensional partial differential equations • Theory and computations of nonlocal modelling and fractional partial differential equations • Novel multi-scale modelling and computational strategies • Parallel computations • Numerical optimization and controls • Imaging algorithms and vision configurations • Computational stochastic processes and inverse problems • Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification • Computational finance and applications • Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine. Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM. Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work. Papers developed from Conference Proceedings Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信