多个相关放射性碳测定的非参数校准及其日历年龄汇总

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Timothy J. Heaton
{"title":"多个相关放射性碳测定的非参数校准及其日历年龄汇总","authors":"Timothy J. Heaton","doi":"10.1111/rssc.12599","DOIUrl":null,"url":null,"abstract":"<p>Due to fluctuations in past radiocarbon (<math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C) levels, calibration is required to convert <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C determinations <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {X}_i $$</annotation>\n </semantics></math> into calendar ages <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\theta}_i $$</annotation>\n </semantics></math>. In many studies, we wish to calibrate a set of related samples taken from the same site or context, which have calendar ages drawn from the same shared, but unknown, density <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f\\left(\\theta \\right) $$</annotation>\n </semantics></math>. Calibration of <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {X}_1,\\dots, {X}_n $$</annotation>\n </semantics></math> can be improved significantly by incorporating the knowledge that the samples are related. Furthermore, summary estimates of the underlying shared <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f\\left(\\theta \\right) $$</annotation>\n </semantics></math> can provide valuable information on changes in population size/activity over time. Most current approaches require a parametric specification for <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f\\left(\\theta \\right) $$</annotation>\n </semantics></math> which is often not appropriate. We develop a rigorous non-parametric Bayesian approach using a Dirichlet process mixture model, with slice sampling to address the multi-modality typical within <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C calibration. Our approach simultaneously calibrates the set of <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C determinations and provides a predictive estimate for the underlying calendar age of a future sample. We show, in a simulation study, the improvement in calendar age estimation when jointly calibrating related samples using our approach, compared with calibration of each <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C determination independently. We also illustrate the use of the predictive calendar age estimate to provide insight on activity levels over time using three real-life case studies.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"71 5","pages":"1918-1956"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12599","citationCount":"1","resultStr":"{\"title\":\"Non-parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation\",\"authors\":\"Timothy J. Heaton\",\"doi\":\"10.1111/rssc.12599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to fluctuations in past radiocarbon (<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C) levels, calibration is required to convert <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C determinations <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {X}_i $$</annotation>\\n </semantics></math> into calendar ages <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\theta}_i $$</annotation>\\n </semantics></math>. In many studies, we wish to calibrate a set of related samples taken from the same site or context, which have calendar ages drawn from the same shared, but unknown, density <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ f\\\\left(\\\\theta \\\\right) $$</annotation>\\n </semantics></math>. Calibration of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>…</mi>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {X}_1,\\\\dots, {X}_n $$</annotation>\\n </semantics></math> can be improved significantly by incorporating the knowledge that the samples are related. Furthermore, summary estimates of the underlying shared <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ f\\\\left(\\\\theta \\\\right) $$</annotation>\\n </semantics></math> can provide valuable information on changes in population size/activity over time. Most current approaches require a parametric specification for <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ f\\\\left(\\\\theta \\\\right) $$</annotation>\\n </semantics></math> which is often not appropriate. We develop a rigorous non-parametric Bayesian approach using a Dirichlet process mixture model, with slice sampling to address the multi-modality typical within <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C calibration. Our approach simultaneously calibrates the set of <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C determinations and provides a predictive estimate for the underlying calendar age of a future sample. We show, in a simulation study, the improvement in calendar age estimation when jointly calibrating related samples using our approach, compared with calibration of each <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C determination independently. We also illustrate the use of the predictive calendar age estimate to provide insight on activity levels over time using three real-life case studies.</p>\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"71 5\",\"pages\":\"1918-1956\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12599\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12599\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12599","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

由于过去放射性碳(14 $$ {}^{14} $$ C)水平的波动,需要校准转换14 $$ {}^{14} $$ C测定X i$$ {X}_i $$变成历法年龄θ I $$ {\theta}_i $$。在许多研究中,我们希望校准来自同一地点或环境的一组相关样本,这些样本的日历年龄来自相同的共享但未知的密度f (θ) $$ f\left(\theta \right) $$。校准x1,…,X n $$ {X}_1,\dots, {X}_n $$可以通过纳入样本相关的知识而得到显著改善。此外,对潜在的共享f (θ) $$ f\left(\theta \right) $$的概要估计可以提供关于人口规模/活动随时间变化的有价值的信息。目前的大多数方法都需要f (θ) $$ f\left(\theta \right) $$的参数说明,这通常是不合适的。我们使用Dirichlet过程混合模型开发了严格的非参数贝叶斯方法,并使用切片采样来解决14 $$ {}^{14} $$ C校准内的多模态典型问题。我们的方法同时校准了14个$$ {}^{14} $$ C测定集,并为未来样本的潜在日历年龄提供了预测性估计。在一项模拟研究中,我们表明,与单独校准每个14 $$ {}^{14} $$ C测定相比,使用我们的方法联合校准相关样品时,日历年龄估计的改善。我们还通过三个现实案例研究说明了预测性日历年龄估计的使用,以深入了解随时间变化的活动水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation

Non-parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation

Due to fluctuations in past radiocarbon ( 14 $$ {}^{14} $$ C) levels, calibration is required to convert 14 $$ {}^{14} $$ C determinations X i $$ {X}_i $$ into calendar ages θ i $$ {\theta}_i $$ . In many studies, we wish to calibrate a set of related samples taken from the same site or context, which have calendar ages drawn from the same shared, but unknown, density f ( θ ) $$ f\left(\theta \right) $$ . Calibration of X 1 , , X n $$ {X}_1,\dots, {X}_n $$ can be improved significantly by incorporating the knowledge that the samples are related. Furthermore, summary estimates of the underlying shared f ( θ ) $$ f\left(\theta \right) $$ can provide valuable information on changes in population size/activity over time. Most current approaches require a parametric specification for f ( θ ) $$ f\left(\theta \right) $$ which is often not appropriate. We develop a rigorous non-parametric Bayesian approach using a Dirichlet process mixture model, with slice sampling to address the multi-modality typical within 14 $$ {}^{14} $$ C calibration. Our approach simultaneously calibrates the set of 14 $$ {}^{14} $$ C determinations and provides a predictive estimate for the underlying calendar age of a future sample. We show, in a simulation study, the improvement in calendar age estimation when jointly calibrating related samples using our approach, compared with calibration of each 14 $$ {}^{14} $$ C determination independently. We also illustrate the use of the predictive calendar age estimate to provide insight on activity levels over time using three real-life case studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信