分数阶傅里叶变换的支持有限广义不确定性关系

Q3 Computer Science
Xiaotong Wang, Guanlei Xu
{"title":"分数阶傅里叶变换的支持有限广义不确定性关系","authors":"Xiaotong Wang, Guanlei Xu","doi":"10.4236/JSIP.2015.63021","DOIUrl":null,"url":null,"abstract":"This paper investigates the generalized \nuncertainty principles of fractional Fourier transform (FRFT) for concentrated \ndata in limited supports. The continuous and discrete generalized uncertainty \nrelations, whose bounds are related to FRFT parameters and signal lengths, were \nderived in theory. These uncertainty principles disclose that the data in FRFT \ndomains may have much higher concentration than that in traditional \ntime-frequency domains, which will enrich the ensemble of generalized \nuncertainty principles.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"31 1","pages":"227-237"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Support-Limited Generalized Uncertainty Relations on Fractional Fourier Transform\",\"authors\":\"Xiaotong Wang, Guanlei Xu\",\"doi\":\"10.4236/JSIP.2015.63021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the generalized \\nuncertainty principles of fractional Fourier transform (FRFT) for concentrated \\ndata in limited supports. The continuous and discrete generalized uncertainty \\nrelations, whose bounds are related to FRFT parameters and signal lengths, were \\nderived in theory. These uncertainty principles disclose that the data in FRFT \\ndomains may have much higher concentration than that in traditional \\ntime-frequency domains, which will enrich the ensemble of generalized \\nuncertainty principles.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"31 1\",\"pages\":\"227-237\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2015.63021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2015.63021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

研究了有限支撑条件下集中数据的分数阶傅里叶变换的广义不确定性原理。从理论上推导了连续和离散广义不确定性关系,其界与FRFT参数和信号长度有关。这些不确定原理揭示了FRFT域中的数据可能比传统时频域中的数据具有更高的浓度,这将丰富广义不确定原理的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support-Limited Generalized Uncertainty Relations on Fractional Fourier Transform
This paper investigates the generalized uncertainty principles of fractional Fourier transform (FRFT) for concentrated data in limited supports. The continuous and discrete generalized uncertainty relations, whose bounds are related to FRFT parameters and signal lengths, were derived in theory. These uncertainty principles disclose that the data in FRFT domains may have much higher concentration than that in traditional time-frequency domains, which will enrich the ensemble of generalized uncertainty principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信