MEMS传声器传感器超低功耗语音接口设计

C. Chung, Chih-Cheng Lu, Wei-Shu Rih, Ching-Feng Lee, Cheng-Ming Shih, Yu-Li Yeh
{"title":"MEMS传声器传感器超低功耗语音接口设计","authors":"C. Chung, Chih-Cheng Lu, Wei-Shu Rih, Ching-Feng Lee, Cheng-Ming Shih, Yu-Li Yeh","doi":"10.1109/SENSORS47087.2021.9639861","DOIUrl":null,"url":null,"abstract":"This paper develops an ultra-low power single-chip voice interface consisting of a programmable gain amplifier (PGA) and 12-bit asynchronous successive-approximation register analog-to-digital converter for MEMS microphone sensor. The PGA’s current can be scaled down from 100uA to 10uA and the measured SNR in 94dBSPL(14mV) is 74dB and 67dB, respectively. It can also set a programmable gain of 40/34/31/28dB for specific demands of microphone. Total Harmonic Distortion (THD) is measured at different output amplitudes, the design exhibits lower than 0.25% THD+N with 94 dBSPL(14mV) at 1kHz. The SAR ADC operates with an 8-kHz sampling rate and consumes only 400nW from a 1.2V VDD. The measured signal-to-noise and distortion ratio (SNDR) is 67.46 dB and spurious-free dynamic range (SFDR) is 87.97 dB. Its sampling rate can be easily scaled from 1M-S/s to 1S/s with a linear power scaling feature. The proposed circuit realized in 180nm CMOS process demonstrates a successful voice data processing (speech/voice recognition, presentation) with the MEMS sensor and an off-chip platform.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"356 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Ultra-low Power Voice Interface Design for MEMS Microphones Sensor\",\"authors\":\"C. Chung, Chih-Cheng Lu, Wei-Shu Rih, Ching-Feng Lee, Cheng-Ming Shih, Yu-Li Yeh\",\"doi\":\"10.1109/SENSORS47087.2021.9639861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an ultra-low power single-chip voice interface consisting of a programmable gain amplifier (PGA) and 12-bit asynchronous successive-approximation register analog-to-digital converter for MEMS microphone sensor. The PGA’s current can be scaled down from 100uA to 10uA and the measured SNR in 94dBSPL(14mV) is 74dB and 67dB, respectively. It can also set a programmable gain of 40/34/31/28dB for specific demands of microphone. Total Harmonic Distortion (THD) is measured at different output amplitudes, the design exhibits lower than 0.25% THD+N with 94 dBSPL(14mV) at 1kHz. The SAR ADC operates with an 8-kHz sampling rate and consumes only 400nW from a 1.2V VDD. The measured signal-to-noise and distortion ratio (SNDR) is 67.46 dB and spurious-free dynamic range (SFDR) is 87.97 dB. Its sampling rate can be easily scaled from 1M-S/s to 1S/s with a linear power scaling feature. The proposed circuit realized in 180nm CMOS process demonstrates a successful voice data processing (speech/voice recognition, presentation) with the MEMS sensor and an off-chip platform.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"356 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文开发了一种用于MEMS麦克风传感器的超低功耗单片语音接口,该接口由可编程增益放大器(PGA)和12位异步逐次逼近寄存器模数转换器组成。PGA的电流可以从100uA缩小到10uA,在94dBSPL(14mV)下测量的信噪比分别为74dB和67dB。它还可以设置40/34/31/28dB的可编程增益,以满足麦克风的特定需求。在不同的输出幅度下测量了总谐波失真(THD),该设计在1kHz时表现出低于0.25%的THD+N,为94 dBSPL(14mV)。SAR ADC以8 khz采样率工作,1.2V VDD功耗仅为400nW。测量的信噪比和失真比(SNDR)为67.46 dB,无杂散动态范围(SFDR)为87.97 dB。它的采样率可以很容易地从1M-S/s缩放到1S/s,具有线性功率缩放功能。该电路在180nm CMOS工艺中实现,在MEMS传感器和片外平台上成功实现了语音数据处理(语音/语音识别,演示)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ultra-low Power Voice Interface Design for MEMS Microphones Sensor
This paper develops an ultra-low power single-chip voice interface consisting of a programmable gain amplifier (PGA) and 12-bit asynchronous successive-approximation register analog-to-digital converter for MEMS microphone sensor. The PGA’s current can be scaled down from 100uA to 10uA and the measured SNR in 94dBSPL(14mV) is 74dB and 67dB, respectively. It can also set a programmable gain of 40/34/31/28dB for specific demands of microphone. Total Harmonic Distortion (THD) is measured at different output amplitudes, the design exhibits lower than 0.25% THD+N with 94 dBSPL(14mV) at 1kHz. The SAR ADC operates with an 8-kHz sampling rate and consumes only 400nW from a 1.2V VDD. The measured signal-to-noise and distortion ratio (SNDR) is 67.46 dB and spurious-free dynamic range (SFDR) is 87.97 dB. Its sampling rate can be easily scaled from 1M-S/s to 1S/s with a linear power scaling feature. The proposed circuit realized in 180nm CMOS process demonstrates a successful voice data processing (speech/voice recognition, presentation) with the MEMS sensor and an off-chip platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信