锡对Se60Te40-xSnx硫系玻璃导热系数和电阻影响的研究

N. H. Khudhair, K. Jasim
{"title":"锡对Se60Te40-xSnx硫系玻璃导热系数和电阻影响的研究","authors":"N. H. Khudhair, K. Jasim","doi":"10.30526/36.1.2892","DOIUrl":null,"url":null,"abstract":"     This research calculated the effect of partial replacement of Trillium with tin by weight ratios x=0, 5, 10, 15, and 20 of the weight of manufactured samples on the thermal conductivity coefficient of Se60Te40-xSnx chalcogenide glasses. The thermal conductivity coefficient of the samples was calculated using a disk- Lee. The results showed that increasing the concentration of tin improves the thermal insulation ability by decreasing the thermal conductivity value and then determining the optimal weight ratios at which a large thermal insulation is obtained.\n The electrical resistivity as a function of temperature was studied. The electrical resistivity (rd.c) was calculated as a function of temperature for all samples, using two-point probe techniques in the dark electrical resistivity measurements of Se60Te40-xSnx glasses for all values made in the temperature range 303-455 K. The electrical resistivity was found that it depends on the change in Tin addition, the temperature is clearly affected by the increase in the concentration of tin in the alloy. The electrical resistance increases when the concentration of Tin increase of Se60Te40-xSnx","PeriodicalId":13022,"journal":{"name":"Ibn AL- Haitham Journal For Pure and Applied Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass\",\"authors\":\"N. H. Khudhair, K. Jasim\",\"doi\":\"10.30526/36.1.2892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"     This research calculated the effect of partial replacement of Trillium with tin by weight ratios x=0, 5, 10, 15, and 20 of the weight of manufactured samples on the thermal conductivity coefficient of Se60Te40-xSnx chalcogenide glasses. The thermal conductivity coefficient of the samples was calculated using a disk- Lee. The results showed that increasing the concentration of tin improves the thermal insulation ability by decreasing the thermal conductivity value and then determining the optimal weight ratios at which a large thermal insulation is obtained.\\n The electrical resistivity as a function of temperature was studied. The electrical resistivity (rd.c) was calculated as a function of temperature for all samples, using two-point probe techniques in the dark electrical resistivity measurements of Se60Te40-xSnx glasses for all values made in the temperature range 303-455 K. The electrical resistivity was found that it depends on the change in Tin addition, the temperature is clearly affected by the increase in the concentration of tin in the alloy. The electrical resistance increases when the concentration of Tin increase of Se60Te40-xSnx\",\"PeriodicalId\":13022,\"journal\":{\"name\":\"Ibn AL- Haitham Journal For Pure and Applied Sciences\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn AL- Haitham Journal For Pure and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/36.1.2892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn AL- Haitham Journal For Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/36.1.2892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究计算了制备样品的质量比x=0、5、10、15、20,部分用锡替代Trillium对Se60Te40-xSnx硫系玻璃导热系数的影响。用圆盘-李法计算了样品的导热系数。结果表明,增加锡的浓度可以通过降低导热系数来提高保温性能,从而确定获得较大保温效果的最佳重量比。研究了电阻率随温度的变化规律。所有样品的电阻率(rdc)作为温度的函数计算,使用两点探针技术在温度范围303-455 K的温度范围内测量Se60Te40-xSnx玻璃的暗电阻率。发现电阻率的变化取决于锡添加量的变化,合金中锡浓度的增加对温度的影响明显。Se60Te40-xSnx的电阻随锡浓度的增加而增加
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass
     This research calculated the effect of partial replacement of Trillium with tin by weight ratios x=0, 5, 10, 15, and 20 of the weight of manufactured samples on the thermal conductivity coefficient of Se60Te40-xSnx chalcogenide glasses. The thermal conductivity coefficient of the samples was calculated using a disk- Lee. The results showed that increasing the concentration of tin improves the thermal insulation ability by decreasing the thermal conductivity value and then determining the optimal weight ratios at which a large thermal insulation is obtained.  The electrical resistivity as a function of temperature was studied. The electrical resistivity (rd.c) was calculated as a function of temperature for all samples, using two-point probe techniques in the dark electrical resistivity measurements of Se60Te40-xSnx glasses for all values made in the temperature range 303-455 K. The electrical resistivity was found that it depends on the change in Tin addition, the temperature is clearly affected by the increase in the concentration of tin in the alloy. The electrical resistance increases when the concentration of Tin increase of Se60Te40-xSnx
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
67
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信