风景双层图像的客观相似度度量

Yuanhao Zhai, D. Neuhoff
{"title":"风景双层图像的客观相似度度量","authors":"Yuanhao Zhai, D. Neuhoff","doi":"10.1109/ICASSP.2014.6854109","DOIUrl":null,"url":null,"abstract":"This paper proposes new objective similarity metrics for scenic bilevel images, which are images containing natural scenes such as landscapes and portraits. Though percentage error is the most commonly used similarity metric for bilevel images, it is not always consistent with human perception. Based on hypotheses about human perception of bilevel images, this paper proposes new metrics that outperform percentage error in the sense of attaining significantly higher Pearson and Spearman-rank correlation coefficients with respect to subjective ratings. The new metrics include Adjusted Percentage Error, Bilevel Gradient Histogram and Connected Components Comparison. The subjective ratings come from similarity evaluations described in a companion paper. Combinations of these metrics are also proposed, which exploit their complementarity to attain even better performance.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"96 1","pages":"2793-2797"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Objective similarity metrics for scenic bilevel images\",\"authors\":\"Yuanhao Zhai, D. Neuhoff\",\"doi\":\"10.1109/ICASSP.2014.6854109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes new objective similarity metrics for scenic bilevel images, which are images containing natural scenes such as landscapes and portraits. Though percentage error is the most commonly used similarity metric for bilevel images, it is not always consistent with human perception. Based on hypotheses about human perception of bilevel images, this paper proposes new metrics that outperform percentage error in the sense of attaining significantly higher Pearson and Spearman-rank correlation coefficients with respect to subjective ratings. The new metrics include Adjusted Percentage Error, Bilevel Gradient Histogram and Connected Components Comparison. The subjective ratings come from similarity evaluations described in a companion paper. Combinations of these metrics are also proposed, which exploit their complementarity to attain even better performance.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"96 1\",\"pages\":\"2793-2797\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的风景双层图像的客观相似度度量方法,这些图像包含风景和肖像等自然场景。虽然百分比误差是两层图像最常用的相似性度量,但它并不总是与人类感知一致。基于人类对双层图像感知的假设,本文提出了新的指标,在相对于主观评分获得显着更高的Pearson和Spearman-rank相关系数的意义上优于百分比误差。新的指标包括调整百分比误差,双层梯度直方图和连接组件比较。主观评分来自一篇配套论文中描述的相似性评估。还提出了这些指标的组合,利用它们的互补性来获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objective similarity metrics for scenic bilevel images
This paper proposes new objective similarity metrics for scenic bilevel images, which are images containing natural scenes such as landscapes and portraits. Though percentage error is the most commonly used similarity metric for bilevel images, it is not always consistent with human perception. Based on hypotheses about human perception of bilevel images, this paper proposes new metrics that outperform percentage error in the sense of attaining significantly higher Pearson and Spearman-rank correlation coefficients with respect to subjective ratings. The new metrics include Adjusted Percentage Error, Bilevel Gradient Histogram and Connected Components Comparison. The subjective ratings come from similarity evaluations described in a companion paper. Combinations of these metrics are also proposed, which exploit their complementarity to attain even better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信