神经元变异性建模中奇异摄动抛物型微分-差分方程的混合数值格式

IF 0.9 Q3 MATHEMATICS, APPLIED
Imiru Takele Daba, Gemechis File Duressa
{"title":"神经元变异性建模中奇异摄动抛物型微分-差分方程的混合数值格式","authors":"Imiru Takele Daba,&nbsp;Gemechis File Duressa","doi":"10.1002/cmm4.1178","DOIUrl":null,"url":null,"abstract":"<p>This study aims at constructing a robust numerical scheme for solving singularly perturbed parabolic delay differential equations arising in the modeling of neuronal variability. Taylor's series expansion is applied to approximate the shift terms. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline in tension method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is shown to be an <math>\n <mrow>\n <mi>ε</mi>\n </mrow></math>-uniformly convergent accuracy of order <math>\n <mrow>\n <mi>O</mi>\n <mfenced>\n <mrow>\n <mi>Λ</mi>\n <mi>t</mi>\n <mo>+</mo>\n <msup>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mi>ln</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mi>N</mi>\n </mrow>\n </mfenced>\n </mrow></math>. Two model examples are given to testify the theoretical findings.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1178","citationCount":"7","resultStr":"{\"title\":\"A hybrid numerical scheme for singularly perturbed parabolic differential-difference equations arising in the modeling of neuronal variability\",\"authors\":\"Imiru Takele Daba,&nbsp;Gemechis File Duressa\",\"doi\":\"10.1002/cmm4.1178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims at constructing a robust numerical scheme for solving singularly perturbed parabolic delay differential equations arising in the modeling of neuronal variability. Taylor's series expansion is applied to approximate the shift terms. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline in tension method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is shown to be an <math>\\n <mrow>\\n <mi>ε</mi>\\n </mrow></math>-uniformly convergent accuracy of order <math>\\n <mrow>\\n <mi>O</mi>\\n <mfenced>\\n <mrow>\\n <mi>Λ</mi>\\n <mi>t</mi>\\n <mo>+</mo>\\n <msup>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mi>ln</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n <mi>N</mi>\\n </mrow>\\n </mfenced>\\n </mrow></math>. Two model examples are given to testify the theoretical findings.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1178\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

本研究的目的是建立一个鲁棒的数值格式来解决奇异摄动抛物型延迟微分方程在神经元变异性建模中出现。泰勒级数展开式应用于移位项的近似。在时间离散上采用均匀步长隐式欧拉法,在空间离散上采用分段均匀Shishkin网格,在外层区域采用中点迎风法,在内层区域采用张力三次样条法混合数值格式进行近似。构造的格式具有O阶ε -一致收敛精度Λ t + N−2ln 3n。给出了两个模型实例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid numerical scheme for singularly perturbed parabolic differential-difference equations arising in the modeling of neuronal variability

This study aims at constructing a robust numerical scheme for solving singularly perturbed parabolic delay differential equations arising in the modeling of neuronal variability. Taylor's series expansion is applied to approximate the shift terms. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline in tension method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is shown to be an ε -uniformly convergent accuracy of order O Λ t + N 2 ln 3 N . Two model examples are given to testify the theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信