{"title":"带矩阵和对称带矩阵的计数函数以及三对角矩阵给定特征值λ的多重计算","authors":"Mongi Ben Hamadou","doi":"10.1016/0961-3552(91)90014-U","DOIUrl":null,"url":null,"abstract":"<div><p>We give two numerotation functions Φ and Ψ respectively for a (real) band and symmetric band matrix, then we give an algorithm for the multiplicity calculation of a given eigenvalue λ for A ϵ <span><math><mtext>R</mtext></math></span><sup>n × n</sup> tridiagonal matrix.</p></div>","PeriodicalId":100044,"journal":{"name":"Advances in Engineering Software and Workstations","volume":"13 4","pages":"Pages 180-184"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-3552(91)90014-U","citationCount":"2","resultStr":"{\"title\":\"Numerotation functions for band and symmetric band matrices and the multiplicity calculation of a given eigenvalue λ for a tridiagonal matrix\",\"authors\":\"Mongi Ben Hamadou\",\"doi\":\"10.1016/0961-3552(91)90014-U\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give two numerotation functions Φ and Ψ respectively for a (real) band and symmetric band matrix, then we give an algorithm for the multiplicity calculation of a given eigenvalue λ for A ϵ <span><math><mtext>R</mtext></math></span><sup>n × n</sup> tridiagonal matrix.</p></div>\",\"PeriodicalId\":100044,\"journal\":{\"name\":\"Advances in Engineering Software and Workstations\",\"volume\":\"13 4\",\"pages\":\"Pages 180-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0961-3552(91)90014-U\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software and Workstations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/096135529190014U\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software and Workstations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096135529190014U","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerotation functions for band and symmetric band matrices and the multiplicity calculation of a given eigenvalue λ for a tridiagonal matrix
We give two numerotation functions Φ and Ψ respectively for a (real) band and symmetric band matrix, then we give an algorithm for the multiplicity calculation of a given eigenvalue λ for A ϵ n × n tridiagonal matrix.