氢退火在多金属层CMOS工艺薄栅氧化物中的作用

Y. Lee, R. Nachman, K. Seshan, D. Kau, N. Mielke
{"title":"氢退火在多金属层CMOS工艺薄栅氧化物中的作用","authors":"Y. Lee, R. Nachman, K. Seshan, D. Kau, N. Mielke","doi":"10.1109/RELPHY.2000.843912","DOIUrl":null,"url":null,"abstract":"This work investigated the impact of H/sub 2/ gas in the final annealing cycle of a 5-metal-layer CMOS process and its effect on MOS device behavior in the presence of Al/Ti metallization. The role of H/sub 2/ was evaluated with transistor electrical testing and with gate-oxide stressing, namely, bias-temperature and hot-carrier injection. Both electrical testing and stressing data showed no difference in device behavior when different external H/sub 2/% was used. However, some differences in PMOSFET bias-temp were observed when the annealing cycle was totally eliminated. Moreover, some differences were observed for devices with different metal coverage. This paper details the results and proposes a model to explain the observations.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":"33 1","pages":"186-190"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Role of hydrogen anneal in thin gate oxide for multi-metal-layer CMOS process\",\"authors\":\"Y. Lee, R. Nachman, K. Seshan, D. Kau, N. Mielke\",\"doi\":\"10.1109/RELPHY.2000.843912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigated the impact of H/sub 2/ gas in the final annealing cycle of a 5-metal-layer CMOS process and its effect on MOS device behavior in the presence of Al/Ti metallization. The role of H/sub 2/ was evaluated with transistor electrical testing and with gate-oxide stressing, namely, bias-temperature and hot-carrier injection. Both electrical testing and stressing data showed no difference in device behavior when different external H/sub 2/% was used. However, some differences in PMOSFET bias-temp were observed when the annealing cycle was totally eliminated. Moreover, some differences were observed for devices with different metal coverage. This paper details the results and proposes a model to explain the observations.\",\"PeriodicalId\":6387,\"journal\":{\"name\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"volume\":\"33 1\",\"pages\":\"186-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2000.843912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了在Al/Ti金属化条件下,H/sub / gas对5金属层CMOS工艺最后退火周期的影响及其对MOS器件行为的影响。通过晶体管电学测试和栅极氧化应力(即偏温和热载子注入)来评估H/sub 2/的作用。当使用不同的外部H/sub 2/%时,电气测试和应力数据没有差异。然而,当完全消除退火周期时,观察到PMOSFET偏置温度存在一些差异。此外,观察到不同金属覆盖的器件存在一些差异。本文详细介绍了结果,并提出了一个模型来解释这些观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of hydrogen anneal in thin gate oxide for multi-metal-layer CMOS process
This work investigated the impact of H/sub 2/ gas in the final annealing cycle of a 5-metal-layer CMOS process and its effect on MOS device behavior in the presence of Al/Ti metallization. The role of H/sub 2/ was evaluated with transistor electrical testing and with gate-oxide stressing, namely, bias-temperature and hot-carrier injection. Both electrical testing and stressing data showed no difference in device behavior when different external H/sub 2/% was used. However, some differences in PMOSFET bias-temp were observed when the annealing cycle was totally eliminated. Moreover, some differences were observed for devices with different metal coverage. This paper details the results and proposes a model to explain the observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信