{"title":"连续二次型背包问题的加权平均定变量法","authors":"Hsin-Min Sun, Yu-Juan Sun","doi":"10.3934/naco.2021048","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We analyze the method of solving the separable convex continuous quadratic knapsack problem by weighted average from the viewpoint of variable fixing. It is shown that this method, considered as a variant of the variable fixing algorithms, and Kiwiel's variable fixing method generate the same iterates. We further improve the algorithm based on the analysis regarding the semismooth Newton method. Computational results are given and comparisons are made among the state-of-the-art algorithms. Experiments show that our algorithm has significantly good performance; it behaves very much like an <inline-formula><tex-math id=\"M1\">\\begin{document}$ O(n) $\\end{document}</tex-math></inline-formula> algorithm with a very small constant.</p>","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"141 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable fixing method by weighted average for the continuous quadratic knapsack problem\",\"authors\":\"Hsin-Min Sun, Yu-Juan Sun\",\"doi\":\"10.3934/naco.2021048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We analyze the method of solving the separable convex continuous quadratic knapsack problem by weighted average from the viewpoint of variable fixing. It is shown that this method, considered as a variant of the variable fixing algorithms, and Kiwiel's variable fixing method generate the same iterates. We further improve the algorithm based on the analysis regarding the semismooth Newton method. Computational results are given and comparisons are made among the state-of-the-art algorithms. Experiments show that our algorithm has significantly good performance; it behaves very much like an <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ O(n) $\\\\end{document}</tex-math></inline-formula> algorithm with a very small constant.</p>\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
摘要
We analyze the method of solving the separable convex continuous quadratic knapsack problem by weighted average from the viewpoint of variable fixing. It is shown that this method, considered as a variant of the variable fixing algorithms, and Kiwiel's variable fixing method generate the same iterates. We further improve the algorithm based on the analysis regarding the semismooth Newton method. Computational results are given and comparisons are made among the state-of-the-art algorithms. Experiments show that our algorithm has significantly good performance; it behaves very much like an \begin{document}$ O(n) $\end{document} algorithm with a very small constant.
Variable fixing method by weighted average for the continuous quadratic knapsack problem
We analyze the method of solving the separable convex continuous quadratic knapsack problem by weighted average from the viewpoint of variable fixing. It is shown that this method, considered as a variant of the variable fixing algorithms, and Kiwiel's variable fixing method generate the same iterates. We further improve the algorithm based on the analysis regarding the semismooth Newton method. Computational results are given and comparisons are made among the state-of-the-art algorithms. Experiments show that our algorithm has significantly good performance; it behaves very much like an \begin{document}$ O(n) $\end{document} algorithm with a very small constant.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.