Yue Yu, Ming-Quan Zeng, Zhijie Qiu, Lei Luo, Hong Chen
{"title":"面向数据保护的联邦学习框架设计过程","authors":"Yue Yu, Ming-Quan Zeng, Zhijie Qiu, Lei Luo, Hong Chen","doi":"10.1109/WCSP49889.2020.9299730","DOIUrl":null,"url":null,"abstract":"Artificial intelligence is a bellwether of today’s new technological revolution. As a branch of artificial intelligence, machine learning faces two main problems in practical application: 1) data owned by most enterprises are difficult to aggregate; and, 2) big data owners pay more and more attention to data privacy and security, which leads to the problem of data island. Federated learning (FL), as a distributed FL paradigm, which can enable all parties to achieve the purpose of co-building models while ensuring data privacy and exposure, provides a possible solution to the mentioned problems of machine learning. The FL takes full advantage of participants’ data and computing power and builds a more robust machine learning model without sharing the data. In an environment with strict data regulation, the FL can effectively solve the key problems, such as those related to data privacy and data rights. However, most of the existing FL-based frameworks do not pay attention to the impact of data source distribution on FL training. Therefore, this paper proposed a data-oriented FL framework called the Federated AI Engine(FAE), which can solve FL problems without leaving the data in control. The proposed framework provides a method that can be used to verify FL quickly for researchers who intend to try federal learning.","PeriodicalId":6858,"journal":{"name":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","volume":"43 1","pages":"968-974"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Data Protection-Oriented Design Procedure for a Federated Learning Framework\",\"authors\":\"Yue Yu, Ming-Quan Zeng, Zhijie Qiu, Lei Luo, Hong Chen\",\"doi\":\"10.1109/WCSP49889.2020.9299730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence is a bellwether of today’s new technological revolution. As a branch of artificial intelligence, machine learning faces two main problems in practical application: 1) data owned by most enterprises are difficult to aggregate; and, 2) big data owners pay more and more attention to data privacy and security, which leads to the problem of data island. Federated learning (FL), as a distributed FL paradigm, which can enable all parties to achieve the purpose of co-building models while ensuring data privacy and exposure, provides a possible solution to the mentioned problems of machine learning. The FL takes full advantage of participants’ data and computing power and builds a more robust machine learning model without sharing the data. In an environment with strict data regulation, the FL can effectively solve the key problems, such as those related to data privacy and data rights. However, most of the existing FL-based frameworks do not pay attention to the impact of data source distribution on FL training. Therefore, this paper proposed a data-oriented FL framework called the Federated AI Engine(FAE), which can solve FL problems without leaving the data in control. The proposed framework provides a method that can be used to verify FL quickly for researchers who intend to try federal learning.\",\"PeriodicalId\":6858,\"journal\":{\"name\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"volume\":\"43 1\",\"pages\":\"968-974\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP49889.2020.9299730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP49889.2020.9299730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Data Protection-Oriented Design Procedure for a Federated Learning Framework
Artificial intelligence is a bellwether of today’s new technological revolution. As a branch of artificial intelligence, machine learning faces two main problems in practical application: 1) data owned by most enterprises are difficult to aggregate; and, 2) big data owners pay more and more attention to data privacy and security, which leads to the problem of data island. Federated learning (FL), as a distributed FL paradigm, which can enable all parties to achieve the purpose of co-building models while ensuring data privacy and exposure, provides a possible solution to the mentioned problems of machine learning. The FL takes full advantage of participants’ data and computing power and builds a more robust machine learning model without sharing the data. In an environment with strict data regulation, the FL can effectively solve the key problems, such as those related to data privacy and data rights. However, most of the existing FL-based frameworks do not pay attention to the impact of data source distribution on FL training. Therefore, this paper proposed a data-oriented FL framework called the Federated AI Engine(FAE), which can solve FL problems without leaving the data in control. The proposed framework provides a method that can be used to verify FL quickly for researchers who intend to try federal learning.