关于高阶能量泛函赤道图的稳定性

A. Fardoun, S. Montaldo, A. Ratto
{"title":"关于高阶能量泛函赤道图的稳定性","authors":"A. Fardoun, S. Montaldo, A. Ratto","doi":"10.1093/IMRN/RNAB009","DOIUrl":null,"url":null,"abstract":"Let $B^n\\subset {\\mathbb R}^{n}$ and ${\\mathbb S}^n\\subset {\\mathbb R}^{n+1}$ denote the Euclidean $n$-dimensional unit ball and sphere respectively. The \\textit{extrinsic $k$-energy functional} is defined on the Sobolev space $W^{k,2}\\left (B^n,{\\mathbb S}^n \\right )$ as follows: $E_{k}^{\\rm ext}(u)=\\int_{B^n}|\\Delta^s u|^2\\,dx$ when $k=2s$, and $E_{k}^{\\rm ext}(u)=\\int_{B^n}|\\nabla \\Delta^s u|^2\\,dx$ when $k=2s+1$. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map $u^*: B^n \\to {\\mathbb S}^n$, defined by $u^*(x)=(x/|x|,0)$, is a critical point of $E_{k}^{\\rm ext}(u)$ provided that $n \\geq 2k+1$. The main aim of this paper is to establish necessary and sufficient conditions on $k$ and $n$ under which $u^*: B^n \\to {\\mathbb S}^n$ is minimizing or unstable for the extrinsic $k$-energy.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Stability of the Equator Map for Higher Order Energy Functionals\",\"authors\":\"A. Fardoun, S. Montaldo, A. Ratto\",\"doi\":\"10.1093/IMRN/RNAB009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $B^n\\\\subset {\\\\mathbb R}^{n}$ and ${\\\\mathbb S}^n\\\\subset {\\\\mathbb R}^{n+1}$ denote the Euclidean $n$-dimensional unit ball and sphere respectively. The \\\\textit{extrinsic $k$-energy functional} is defined on the Sobolev space $W^{k,2}\\\\left (B^n,{\\\\mathbb S}^n \\\\right )$ as follows: $E_{k}^{\\\\rm ext}(u)=\\\\int_{B^n}|\\\\Delta^s u|^2\\\\,dx$ when $k=2s$, and $E_{k}^{\\\\rm ext}(u)=\\\\int_{B^n}|\\\\nabla \\\\Delta^s u|^2\\\\,dx$ when $k=2s+1$. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map $u^*: B^n \\\\to {\\\\mathbb S}^n$, defined by $u^*(x)=(x/|x|,0)$, is a critical point of $E_{k}^{\\\\rm ext}(u)$ provided that $n \\\\geq 2k+1$. The main aim of this paper is to establish necessary and sufficient conditions on $k$ and $n$ under which $u^*: B^n \\\\to {\\\\mathbb S}^n$ is minimizing or unstable for the extrinsic $k$-energy.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$B^n\subset {\mathbb R}^{n}$和${\mathbb S}^n\subset {\mathbb R}^{n+1}$分别表示欧几里得$n$维单位球和球。\textit{外在的$k$-能量泛函}在Sobolev空间$W^{k,2}\left (B^n,{\mathbb S}^n \right )$上定义如下:$k=2s$时为$E_{k}^{\rm ext}(u)=\int_{B^n}|\Delta^s u|^2\,dx$, $k=2s+1$时为$E_{k}^{\rm ext}(u)=\int_{B^n}|\nabla \Delta^s u|^2\,dx$。这些能量泛函是经典外在生物能量的自然高阶版本,也称为黑森能量。由$u^*(x)=(x/|x|,0)$定义的赤道图$u^*: B^n \to {\mathbb S}^n$是$E_{k}^{\rm ext}(u)$的一个临界点,假设$n \geq 2k+1$。本文的主要目的是建立$k$和$n$的充分必要条件,在此条件下,$u^*: B^n \to {\mathbb S}^n$对于外部的$k$ -能量是最小的或不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Stability of the Equator Map for Higher Order Energy Functionals
Let $B^n\subset {\mathbb R}^{n}$ and ${\mathbb S}^n\subset {\mathbb R}^{n+1}$ denote the Euclidean $n$-dimensional unit ball and sphere respectively. The \textit{extrinsic $k$-energy functional} is defined on the Sobolev space $W^{k,2}\left (B^n,{\mathbb S}^n \right )$ as follows: $E_{k}^{\rm ext}(u)=\int_{B^n}|\Delta^s u|^2\,dx$ when $k=2s$, and $E_{k}^{\rm ext}(u)=\int_{B^n}|\nabla \Delta^s u|^2\,dx$ when $k=2s+1$. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map $u^*: B^n \to {\mathbb S}^n$, defined by $u^*(x)=(x/|x|,0)$, is a critical point of $E_{k}^{\rm ext}(u)$ provided that $n \geq 2k+1$. The main aim of this paper is to establish necessary and sufficient conditions on $k$ and $n$ under which $u^*: B^n \to {\mathbb S}^n$ is minimizing or unstable for the extrinsic $k$-energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信