{"title":"关于高阶能量泛函赤道图的稳定性","authors":"A. Fardoun, S. Montaldo, A. Ratto","doi":"10.1093/IMRN/RNAB009","DOIUrl":null,"url":null,"abstract":"Let $B^n\\subset {\\mathbb R}^{n}$ and ${\\mathbb S}^n\\subset {\\mathbb R}^{n+1}$ denote the Euclidean $n$-dimensional unit ball and sphere respectively. The \\textit{extrinsic $k$-energy functional} is defined on the Sobolev space $W^{k,2}\\left (B^n,{\\mathbb S}^n \\right )$ as follows: $E_{k}^{\\rm ext}(u)=\\int_{B^n}|\\Delta^s u|^2\\,dx$ when $k=2s$, and $E_{k}^{\\rm ext}(u)=\\int_{B^n}|\\nabla \\Delta^s u|^2\\,dx$ when $k=2s+1$. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map $u^*: B^n \\to {\\mathbb S}^n$, defined by $u^*(x)=(x/|x|,0)$, is a critical point of $E_{k}^{\\rm ext}(u)$ provided that $n \\geq 2k+1$. The main aim of this paper is to establish necessary and sufficient conditions on $k$ and $n$ under which $u^*: B^n \\to {\\mathbb S}^n$ is minimizing or unstable for the extrinsic $k$-energy.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Stability of the Equator Map for Higher Order Energy Functionals\",\"authors\":\"A. Fardoun, S. Montaldo, A. Ratto\",\"doi\":\"10.1093/IMRN/RNAB009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $B^n\\\\subset {\\\\mathbb R}^{n}$ and ${\\\\mathbb S}^n\\\\subset {\\\\mathbb R}^{n+1}$ denote the Euclidean $n$-dimensional unit ball and sphere respectively. The \\\\textit{extrinsic $k$-energy functional} is defined on the Sobolev space $W^{k,2}\\\\left (B^n,{\\\\mathbb S}^n \\\\right )$ as follows: $E_{k}^{\\\\rm ext}(u)=\\\\int_{B^n}|\\\\Delta^s u|^2\\\\,dx$ when $k=2s$, and $E_{k}^{\\\\rm ext}(u)=\\\\int_{B^n}|\\\\nabla \\\\Delta^s u|^2\\\\,dx$ when $k=2s+1$. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map $u^*: B^n \\\\to {\\\\mathbb S}^n$, defined by $u^*(x)=(x/|x|,0)$, is a critical point of $E_{k}^{\\\\rm ext}(u)$ provided that $n \\\\geq 2k+1$. The main aim of this paper is to establish necessary and sufficient conditions on $k$ and $n$ under which $u^*: B^n \\\\to {\\\\mathbb S}^n$ is minimizing or unstable for the extrinsic $k$-energy.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Stability of the Equator Map for Higher Order Energy Functionals
Let $B^n\subset {\mathbb R}^{n}$ and ${\mathbb S}^n\subset {\mathbb R}^{n+1}$ denote the Euclidean $n$-dimensional unit ball and sphere respectively. The \textit{extrinsic $k$-energy functional} is defined on the Sobolev space $W^{k,2}\left (B^n,{\mathbb S}^n \right )$ as follows: $E_{k}^{\rm ext}(u)=\int_{B^n}|\Delta^s u|^2\,dx$ when $k=2s$, and $E_{k}^{\rm ext}(u)=\int_{B^n}|\nabla \Delta^s u|^2\,dx$ when $k=2s+1$. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map $u^*: B^n \to {\mathbb S}^n$, defined by $u^*(x)=(x/|x|,0)$, is a critical point of $E_{k}^{\rm ext}(u)$ provided that $n \geq 2k+1$. The main aim of this paper is to establish necessary and sufficient conditions on $k$ and $n$ under which $u^*: B^n \to {\mathbb S}^n$ is minimizing or unstable for the extrinsic $k$-energy.