基于心跳水平和节段水平信息融合的心电生物识别技术

Ming Li, Xin Li
{"title":"基于心跳水平和节段水平信息融合的心电生物识别技术","authors":"Ming Li, Xin Li","doi":"10.1109/ICASSP.2014.6854306","DOIUrl":null,"url":null,"abstract":"We propose an ECG based robust human verification system for both healthy and cardiac irregular conditions using the heartbeat level and segment level information fusion. At the heartbeat level, we first propose a novel beat normalization and outlier removal algorithm after peak detection to extract normalized representative beats. Then after principal component analysis (PCA), we apply linear discriminant analysis (LDA) and within-class covariance normalization (WCCN) for beat variability compensation followed by cosine similarity and Snorm as scoring. At the segment level, we adopt the hierarchical Dirichlet process auto-regressive hidden Markov model (HDP-AR-HMM) in the Bayesian non-parametric framework for unsupervised joint segmentation and clustering without any peak detection. It automatically decodes each raw signal into a string vector. We then apply n-gram language model and hypothesis testing for scoring. Combining the aforementioned two subsystems together further improved the performance and outperformed the PCA baseline by 25% relatively on the PTB database.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"41 1","pages":"3769-3773"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Verification based ECG biometrics with cardiac irregular conditions using heartbeat level and segment level information fusion\",\"authors\":\"Ming Li, Xin Li\",\"doi\":\"10.1109/ICASSP.2014.6854306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an ECG based robust human verification system for both healthy and cardiac irregular conditions using the heartbeat level and segment level information fusion. At the heartbeat level, we first propose a novel beat normalization and outlier removal algorithm after peak detection to extract normalized representative beats. Then after principal component analysis (PCA), we apply linear discriminant analysis (LDA) and within-class covariance normalization (WCCN) for beat variability compensation followed by cosine similarity and Snorm as scoring. At the segment level, we adopt the hierarchical Dirichlet process auto-regressive hidden Markov model (HDP-AR-HMM) in the Bayesian non-parametric framework for unsupervised joint segmentation and clustering without any peak detection. It automatically decodes each raw signal into a string vector. We then apply n-gram language model and hypothesis testing for scoring. Combining the aforementioned two subsystems together further improved the performance and outperformed the PCA baseline by 25% relatively on the PTB database.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"41 1\",\"pages\":\"3769-3773\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们提出了一种基于心电的健康和不规则心脏的鲁棒人体验证系统,该系统采用心跳水平和节段水平信息融合。在心跳层面,我们首先提出了一种新的峰值检测后的心跳归一化和异常值去除算法,以提取归一化的代表性心跳。然后,在主成分分析(PCA)之后,采用线性判别分析(LDA)和类内协方差归一化(WCCN)进行温度变异性补偿,然后采用余弦相似度和斯诺姆值进行评分。在片段层面,我们在贝叶斯非参数框架中采用层次Dirichlet过程自回归隐马尔可夫模型(HDP-AR-HMM)进行无监督联合分割和聚类,不进行任何峰值检测。它自动将每个原始信号解码成字符串向量。然后,我们应用n-gram语言模型和假设检验进行评分。将上述两个子系统结合在一起进一步提高了性能,在PTB数据库上的性能比PCA基线高出25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification based ECG biometrics with cardiac irregular conditions using heartbeat level and segment level information fusion
We propose an ECG based robust human verification system for both healthy and cardiac irregular conditions using the heartbeat level and segment level information fusion. At the heartbeat level, we first propose a novel beat normalization and outlier removal algorithm after peak detection to extract normalized representative beats. Then after principal component analysis (PCA), we apply linear discriminant analysis (LDA) and within-class covariance normalization (WCCN) for beat variability compensation followed by cosine similarity and Snorm as scoring. At the segment level, we adopt the hierarchical Dirichlet process auto-regressive hidden Markov model (HDP-AR-HMM) in the Bayesian non-parametric framework for unsupervised joint segmentation and clustering without any peak detection. It automatically decodes each raw signal into a string vector. We then apply n-gram language model and hypothesis testing for scoring. Combining the aforementioned two subsystems together further improved the performance and outperformed the PCA baseline by 25% relatively on the PTB database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信