基于层次光谱聚类的视觉相关类目大余量分类

Digbalay Bose, S. Chaudhuri
{"title":"基于层次光谱聚类的视觉相关类目大余量分类","authors":"Digbalay Bose, S. Chaudhuri","doi":"10.1145/3009977.3010064","DOIUrl":null,"url":null,"abstract":"Object recognition is one of the challenging tasks in computer vision and the problem becomes increasingly difficult when the image categories are visually correlated among themselves i.e. they are visually similar and only fine differences exist among the categories. This paper has a two-fold objective which involves organization of the image categories in a hierarchical tree like structure using self tuning spectral clustering for exploiting the correlations among them. The organization phase is followed by a node specific large margin nearest neighbor classification scheme, where a Mahalnobis distance metric is learnt for each non-leaf node. Further a procedure for hyperparameters selection has been discussed w.r.t two strategies i.e. grid search and Bayesian optimization. The proposed algorithm's effectiveness is tested on selected classes of the popular Imagenet dataset.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"160 1","pages":"48:1-48:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical spectral clustering based large margin classification of visually correlated categories\",\"authors\":\"Digbalay Bose, S. Chaudhuri\",\"doi\":\"10.1145/3009977.3010064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object recognition is one of the challenging tasks in computer vision and the problem becomes increasingly difficult when the image categories are visually correlated among themselves i.e. they are visually similar and only fine differences exist among the categories. This paper has a two-fold objective which involves organization of the image categories in a hierarchical tree like structure using self tuning spectral clustering for exploiting the correlations among them. The organization phase is followed by a node specific large margin nearest neighbor classification scheme, where a Mahalnobis distance metric is learnt for each non-leaf node. Further a procedure for hyperparameters selection has been discussed w.r.t two strategies i.e. grid search and Bayesian optimization. The proposed algorithm's effectiveness is tested on selected classes of the popular Imagenet dataset.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"160 1\",\"pages\":\"48:1-48:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3010064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

物体识别是计算机视觉领域的难点之一,当图像类别在视觉上相互关联,即它们在视觉上相似,而类别之间只有细微的差异时,问题就变得越来越困难。本文有两个目标,即使用自调谐光谱聚类来利用它们之间的相关性,将图像类别组织成层次树状结构。组织阶段之后是节点特定的大边缘最近邻分类方案,其中每个非叶节点学习Mahalnobis距离度量。进一步讨论了基于网格搜索和贝叶斯优化两种策略的超参数选择过程。在常用的Imagenet数据集上对算法的有效性进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical spectral clustering based large margin classification of visually correlated categories
Object recognition is one of the challenging tasks in computer vision and the problem becomes increasingly difficult when the image categories are visually correlated among themselves i.e. they are visually similar and only fine differences exist among the categories. This paper has a two-fold objective which involves organization of the image categories in a hierarchical tree like structure using self tuning spectral clustering for exploiting the correlations among them. The organization phase is followed by a node specific large margin nearest neighbor classification scheme, where a Mahalnobis distance metric is learnt for each non-leaf node. Further a procedure for hyperparameters selection has been discussed w.r.t two strategies i.e. grid search and Bayesian optimization. The proposed algorithm's effectiveness is tested on selected classes of the popular Imagenet dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信