Quo Vadis,人工智能?

D. Berrar, N. Sato, A. Schuster
{"title":"Quo Vadis,人工智能?","authors":"D. Berrar, N. Sato, A. Schuster","doi":"10.1155/2010/629869","DOIUrl":null,"url":null,"abstract":"Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervous systems of biological organisms and systems biology with its longing to comprehend, holistically, the multitude of complex interactions in biological systems are two such fields. They target ideals artificial intelligence has dreamt about for a long time including the computer simulation of an entire biological brain or the creation of new life forms from manipulations of cellular and genetic information in the laboratory. The scope for artificial intelligence in neuroscience and systems biology is extremely wide. This article investigates the standing of artificial intelligence in relation to neuroscience and systems biology and provides an outlook at new and exciting challenges for artificial intelligence in these fields. These challenges include, but are not necessarily limited to, the ability to learn from other projects and to be inventive, to understand the potential and exploit novel computing paradigms and environments, to specify and adhere to stringent standards and robust statistical frameworks, to be integrative, and to embrace openness principles.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Quo Vadis, Artificial Intelligence?\",\"authors\":\"D. Berrar, N. Sato, A. Schuster\",\"doi\":\"10.1155/2010/629869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervous systems of biological organisms and systems biology with its longing to comprehend, holistically, the multitude of complex interactions in biological systems are two such fields. They target ideals artificial intelligence has dreamt about for a long time including the computer simulation of an entire biological brain or the creation of new life forms from manipulations of cellular and genetic information in the laboratory. The scope for artificial intelligence in neuroscience and systems biology is extremely wide. This article investigates the standing of artificial intelligence in relation to neuroscience and systems biology and provides an outlook at new and exciting challenges for artificial intelligence in these fields. These challenges include, but are not necessarily limited to, the ability to learn from other projects and to be inventive, to understand the potential and exploit novel computing paradigms and environments, to specify and adhere to stringent standards and robust statistical frameworks, to be integrative, and to embrace openness principles.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2010/629869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/629869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

自20世纪50年代中期提出概念以来,人工智能以其在自然和人工环境中理解和模仿智能的伟大抱负,现在是一个真正的多学科领域,它伸出并受到其他领域多样性的启发。各个领域的研究和技术的快速发展创造了人工智能可以自然舒适地嵌入其中的环境。神经科学渴望理解生物有机体的神经系统,而系统生物学渴望从整体上理解生物系统中众多复杂的相互作用,这就是两个这样的领域。它们的目标是人工智能长期以来梦寐以求的理想,包括对整个生物大脑的计算机模拟,或者在实验室中通过操纵细胞和遗传信息创造新的生命形式。人工智能在神经科学和系统生物学中的应用范围非常广泛。本文探讨了人工智能在神经科学和系统生物学中的地位,并展望了人工智能在这些领域的新挑战。这些挑战包括,但不一定限于,从其他项目中学习和创新的能力,了解潜力并利用新的计算范式和环境,指定并坚持严格的标准和强大的统计框架,整合和拥抱开放原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quo Vadis, Artificial Intelligence?
Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervous systems of biological organisms and systems biology with its longing to comprehend, holistically, the multitude of complex interactions in biological systems are two such fields. They target ideals artificial intelligence has dreamt about for a long time including the computer simulation of an entire biological brain or the creation of new life forms from manipulations of cellular and genetic information in the laboratory. The scope for artificial intelligence in neuroscience and systems biology is extremely wide. This article investigates the standing of artificial intelligence in relation to neuroscience and systems biology and provides an outlook at new and exciting challenges for artificial intelligence in these fields. These challenges include, but are not necessarily limited to, the ability to learn from other projects and to be inventive, to understand the potential and exploit novel computing paradigms and environments, to specify and adhere to stringent standards and robust statistical frameworks, to be integrative, and to embrace openness principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信