在行为驱动开发中预测功能规范和源代码之间的共同变更

Aidan Z. H. Yang, D. A. D. Costa, Ying Zou
{"title":"在行为驱动开发中预测功能规范和源代码之间的共同变更","authors":"Aidan Z. H. Yang, D. A. D. Costa, Ying Zou","doi":"10.1109/MSR.2019.00080","DOIUrl":null,"url":null,"abstract":"Behavior Driven Development (BDD) is an agile approach that uses. feature files to describe the functionalities of a software system using natural language constructs (English-like phrases). Because of the English-like structure of. feature files, BDD specifications become an evolving documentation that helps all (even non-technical) stakeholders to understand and contribute to a software project. After specifying a. feature files, developers can use a BDD tool (e.g., Cucumber) to automatically generate test cases and implement the code of the specified functionality. However, maintaining traceability between. feature files and source code requires human efforts. Therefore,. feature files can be out-of-date, reducing the advantages of using BDD. Furthermore, existing research do not attempt to improve the traceability between. feature files and source code files. In this paper, we study the co-changes between. feature files and source code files to improve the traceability between. feature files and source code files. Due to the English-like syntax of. feature files, we use natural language processing to identify co-changes, with an accuracy of 79%. We study the characteristics of BDD co-changes and build random forest models to predict when a. feature files should be modified before committing a code change. The random forest model obtains an AUC of 0.77. The model can assist developers in identifying when a. feature files should be modified in code commits. Once the traceability is up-to-date, BDD developers can write test code more efficiently and keep the software documentation up-to-date.","PeriodicalId":6706,"journal":{"name":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","volume":"15 1","pages":"534-544"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Predicting Co-Changes between Functionality Specifications and Source Code in Behavior Driven Development\",\"authors\":\"Aidan Z. H. Yang, D. A. D. Costa, Ying Zou\",\"doi\":\"10.1109/MSR.2019.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Behavior Driven Development (BDD) is an agile approach that uses. feature files to describe the functionalities of a software system using natural language constructs (English-like phrases). Because of the English-like structure of. feature files, BDD specifications become an evolving documentation that helps all (even non-technical) stakeholders to understand and contribute to a software project. After specifying a. feature files, developers can use a BDD tool (e.g., Cucumber) to automatically generate test cases and implement the code of the specified functionality. However, maintaining traceability between. feature files and source code requires human efforts. Therefore,. feature files can be out-of-date, reducing the advantages of using BDD. Furthermore, existing research do not attempt to improve the traceability between. feature files and source code files. In this paper, we study the co-changes between. feature files and source code files to improve the traceability between. feature files and source code files. Due to the English-like syntax of. feature files, we use natural language processing to identify co-changes, with an accuracy of 79%. We study the characteristics of BDD co-changes and build random forest models to predict when a. feature files should be modified before committing a code change. The random forest model obtains an AUC of 0.77. The model can assist developers in identifying when a. feature files should be modified in code commits. Once the traceability is up-to-date, BDD developers can write test code more efficiently and keep the software documentation up-to-date.\",\"PeriodicalId\":6706,\"journal\":{\"name\":\"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)\",\"volume\":\"15 1\",\"pages\":\"534-544\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2019.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2019.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

行为驱动开发(BDD)是一种敏捷方法,它使用。使用自然语言结构(类似英语的短语)描述软件系统功能的特征文件。因为的结构类似于英语。特性文件,BDD规范成为一种不断发展的文档,帮助所有(甚至是非技术的)涉众理解并为软件项目做出贡献。在指定了特性文件之后,开发人员可以使用BDD工具(例如Cucumber)自动生成测试用例并实现指定功能的代码。然而,维护之间的可追溯性。特性文件和源代码需要人工操作。因此,。特性文件可能过时,从而降低了使用BDD的优势。此外,现有的研究并没有试图改善两者之间的可追溯性。功能文件和源代码文件。在本文中,我们研究了两者之间的共变。改进特性文件和源代码文件之间的可追溯性。功能文件和源代码文件。的语法类似于英语。特征文件,我们使用自然语言处理来识别共同变化,准确率为79%。我们研究了BDD协同变更的特点,并建立了随机森林模型来预测在提交代码变更之前应该何时修改特征文件。随机森林模型的AUC为0.77。该模型可以帮助开发人员确定何时应该在代码提交中修改特性文件。一旦跟踪性是最新的,BDD开发人员就可以更有效地编写测试代码,并保持软件文档是最新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Co-Changes between Functionality Specifications and Source Code in Behavior Driven Development
Behavior Driven Development (BDD) is an agile approach that uses. feature files to describe the functionalities of a software system using natural language constructs (English-like phrases). Because of the English-like structure of. feature files, BDD specifications become an evolving documentation that helps all (even non-technical) stakeholders to understand and contribute to a software project. After specifying a. feature files, developers can use a BDD tool (e.g., Cucumber) to automatically generate test cases and implement the code of the specified functionality. However, maintaining traceability between. feature files and source code requires human efforts. Therefore,. feature files can be out-of-date, reducing the advantages of using BDD. Furthermore, existing research do not attempt to improve the traceability between. feature files and source code files. In this paper, we study the co-changes between. feature files and source code files to improve the traceability between. feature files and source code files. Due to the English-like syntax of. feature files, we use natural language processing to identify co-changes, with an accuracy of 79%. We study the characteristics of BDD co-changes and build random forest models to predict when a. feature files should be modified before committing a code change. The random forest model obtains an AUC of 0.77. The model can assist developers in identifying when a. feature files should be modified in code commits. Once the traceability is up-to-date, BDD developers can write test code more efficiently and keep the software documentation up-to-date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信