{"title":"幂律流体在高雷诺数下流过旋转圆柱体的流动","authors":"P. Thakur, Naveen Tiwari, R. Chhabra","doi":"10.1115/1.4050973","DOIUrl":null,"url":null,"abstract":"\n In this study, a rotating cylinder is placed in a stream of shear-thinning fluids, flowing with a uniform velocity. Detailed investigations are performed for the following range of conditions: Reynolds number 100≤Re≤500, power-law index 0.2≤n≤1 and rotational velocity 0≤α≤5. Flow transitions are observed from steady to unsteady at critical values of the Reynolds number, the rotational velocity, and the power-law index. Critical values of the Reynolds number Rec have been obtained for varying levels of the rotational velocity, and the power-law index. Rec varies nonmonotonically with the rotational velocity. At a particular Reynolds number, an increase of the rotational velocity acts as a vortex suppression technique. For shear-thinning fluids considered here, the vortex suppression occurs at a larger value of the critical rotational velocity αc, relative to Newtonian fluids. For the unsteady flow, the lift coefficient versus time curve exhibits oscillatory behavior, and this has been used to delineate the flow regime as steady or unsteady flow. For unsteady flow regimes, both the amplitude of the lift coefficient and the Strouhal number increase with increasing Reynolds numbers. The results presented in this work for such high Reynolds numbers elucidate the possible complex interplay between the kinematic and rheological parameters of non-Newtonian fluids. This investigation also complements the currently available low Reynolds number results up to ∼ Re=140.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow of Power-Law Fluids Past a Rotating Cylinder at High Reynolds Numbers\",\"authors\":\"P. Thakur, Naveen Tiwari, R. Chhabra\",\"doi\":\"10.1115/1.4050973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, a rotating cylinder is placed in a stream of shear-thinning fluids, flowing with a uniform velocity. Detailed investigations are performed for the following range of conditions: Reynolds number 100≤Re≤500, power-law index 0.2≤n≤1 and rotational velocity 0≤α≤5. Flow transitions are observed from steady to unsteady at critical values of the Reynolds number, the rotational velocity, and the power-law index. Critical values of the Reynolds number Rec have been obtained for varying levels of the rotational velocity, and the power-law index. Rec varies nonmonotonically with the rotational velocity. At a particular Reynolds number, an increase of the rotational velocity acts as a vortex suppression technique. For shear-thinning fluids considered here, the vortex suppression occurs at a larger value of the critical rotational velocity αc, relative to Newtonian fluids. For the unsteady flow, the lift coefficient versus time curve exhibits oscillatory behavior, and this has been used to delineate the flow regime as steady or unsteady flow. For unsteady flow regimes, both the amplitude of the lift coefficient and the Strouhal number increase with increasing Reynolds numbers. The results presented in this work for such high Reynolds numbers elucidate the possible complex interplay between the kinematic and rheological parameters of non-Newtonian fluids. This investigation also complements the currently available low Reynolds number results up to ∼ Re=140.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050973\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4050973","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Flow of Power-Law Fluids Past a Rotating Cylinder at High Reynolds Numbers
In this study, a rotating cylinder is placed in a stream of shear-thinning fluids, flowing with a uniform velocity. Detailed investigations are performed for the following range of conditions: Reynolds number 100≤Re≤500, power-law index 0.2≤n≤1 and rotational velocity 0≤α≤5. Flow transitions are observed from steady to unsteady at critical values of the Reynolds number, the rotational velocity, and the power-law index. Critical values of the Reynolds number Rec have been obtained for varying levels of the rotational velocity, and the power-law index. Rec varies nonmonotonically with the rotational velocity. At a particular Reynolds number, an increase of the rotational velocity acts as a vortex suppression technique. For shear-thinning fluids considered here, the vortex suppression occurs at a larger value of the critical rotational velocity αc, relative to Newtonian fluids. For the unsteady flow, the lift coefficient versus time curve exhibits oscillatory behavior, and this has been used to delineate the flow regime as steady or unsteady flow. For unsteady flow regimes, both the amplitude of the lift coefficient and the Strouhal number increase with increasing Reynolds numbers. The results presented in this work for such high Reynolds numbers elucidate the possible complex interplay between the kinematic and rheological parameters of non-Newtonian fluids. This investigation also complements the currently available low Reynolds number results up to ∼ Re=140.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes