5G应用中基于介质谐振器天线的反射射线谐振元件

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
N. F. Sallehuddin, M. Jamaluddin, M. Kamarudin, M. H. Dahri
{"title":"5G应用中基于介质谐振器天线的反射射线谐振元件","authors":"N. F. Sallehuddin, M. Jamaluddin, M. Kamarudin, M. H. Dahri","doi":"10.47037/2021.aces.j.360704","DOIUrl":null,"url":null,"abstract":"The performance of a proposed cross hybrid dielectric resonator antenna (DRA) element for dual polarization configuration operating at 26 GHz for 5G applications is presented in this paper. The new cross hybrid DRA unit cell is introduced which combines a cross shape DRA with a bottom loading cross microstrip patch. This technique of a bottom loading cross microstrip patch is chosen as the tuning mechanism (varying the length of the microstrip to tune the phase) instead of changing the DRA dimensions because of their ease of implementation and fabrication. By doing so, high reflection phase range with low reflection loss performance can be obtained, which is essential for a high bandwidth and high gain reflectarray for 5G applications. The design and simulation have been done using commercial software of CST MWS. The reflection loss, reflection phase and slope variation were analyzed and compared. A metallic cross microstrip patch of varying length placed beneath the DRA to act as the phase shifter to tune the phase and give smooth variation in slope with a large phase range. The proposed cross hybrid DRA unit cell provides a high reflection phase range of 342º and 1.8 dB reflection loss. The computed results are compared with experimental results revealing reasonable agreement, thereby confirming the viability of the design.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"179 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reflectarray Resonant Element based on a Dielectric Resonator Antenna for 5G Applications\",\"authors\":\"N. F. Sallehuddin, M. Jamaluddin, M. Kamarudin, M. H. Dahri\",\"doi\":\"10.47037/2021.aces.j.360704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a proposed cross hybrid dielectric resonator antenna (DRA) element for dual polarization configuration operating at 26 GHz for 5G applications is presented in this paper. The new cross hybrid DRA unit cell is introduced which combines a cross shape DRA with a bottom loading cross microstrip patch. This technique of a bottom loading cross microstrip patch is chosen as the tuning mechanism (varying the length of the microstrip to tune the phase) instead of changing the DRA dimensions because of their ease of implementation and fabrication. By doing so, high reflection phase range with low reflection loss performance can be obtained, which is essential for a high bandwidth and high gain reflectarray for 5G applications. The design and simulation have been done using commercial software of CST MWS. The reflection loss, reflection phase and slope variation were analyzed and compared. A metallic cross microstrip patch of varying length placed beneath the DRA to act as the phase shifter to tune the phase and give smooth variation in slope with a large phase range. The proposed cross hybrid DRA unit cell provides a high reflection phase range of 342º and 1.8 dB reflection loss. The computed results are compared with experimental results revealing reasonable agreement, thereby confirming the viability of the design.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.360704\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360704","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种用于5G应用的26 GHz双极化配置的交叉混合介质谐振器天线(DRA)元件的性能。介绍了一种新型的交叉混合DRA单元电池,它将十字形状的DRA与底部加载的交叉微带贴片相结合。选择底部加载交叉微带贴片的技术作为调谐机制(改变微带的长度来调整相位),而不是改变DRA尺寸,因为它们易于实现和制造。这样可以获得具有低反射损耗性能的高反射相位范围,这对于5G应用中的高带宽高增益反射器至关重要。利用CST MWS的商业软件进行了设计和仿真。对反射损耗、反射相位和斜率变化进行了分析比较。在DRA下面放置一个长度不等的金属交叉微带贴片,作为移相器来调整相位,并在大相位范围内提供平滑的斜率变化。所提出的交叉杂化DRA单元电池具有342º的高反射相位范围和1.8 dB的反射损耗。将计算结果与实验结果进行了比较,结果吻合较好,从而证实了设计的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflectarray Resonant Element based on a Dielectric Resonator Antenna for 5G Applications
The performance of a proposed cross hybrid dielectric resonator antenna (DRA) element for dual polarization configuration operating at 26 GHz for 5G applications is presented in this paper. The new cross hybrid DRA unit cell is introduced which combines a cross shape DRA with a bottom loading cross microstrip patch. This technique of a bottom loading cross microstrip patch is chosen as the tuning mechanism (varying the length of the microstrip to tune the phase) instead of changing the DRA dimensions because of their ease of implementation and fabrication. By doing so, high reflection phase range with low reflection loss performance can be obtained, which is essential for a high bandwidth and high gain reflectarray for 5G applications. The design and simulation have been done using commercial software of CST MWS. The reflection loss, reflection phase and slope variation were analyzed and compared. A metallic cross microstrip patch of varying length placed beneath the DRA to act as the phase shifter to tune the phase and give smooth variation in slope with a large phase range. The proposed cross hybrid DRA unit cell provides a high reflection phase range of 342º and 1.8 dB reflection loss. The computed results are compared with experimental results revealing reasonable agreement, thereby confirming the viability of the design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信