{"title":"满足多个风险约束的投资组合设计成本的对偶表示","authors":"Géraldine Bouveret","doi":"10.1080/1350486X.2019.1638276","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider, within a Markovian complete financial market, the problem of finding the least expensive portfolio process meeting, at each payment date, three different types of risk criterion. Two of them encompass an expected utility-based measure and a quantile hedging constraint imposed at inception on all the future payment dates, while the other one is a quantile hedging constraint set at each payment date over the next one. The quantile risk measures are defined with respect to a stochastic benchmark and the expected utility-based constraint is applied to random payment dates. We explicit the Legendre-Fenchel transform of the pricing function. We also provide, for each quantile hedging problem, a backward dual algorithm allowing to compute their associated value function by backward recursion. The algorithms are illustrated with a numerical example.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"109 1","pages":"222 - 256"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dual Representation of the Cost of Designing a Portfolio Satisfying Multiple Risk Constraints\",\"authors\":\"Géraldine Bouveret\",\"doi\":\"10.1080/1350486X.2019.1638276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We consider, within a Markovian complete financial market, the problem of finding the least expensive portfolio process meeting, at each payment date, three different types of risk criterion. Two of them encompass an expected utility-based measure and a quantile hedging constraint imposed at inception on all the future payment dates, while the other one is a quantile hedging constraint set at each payment date over the next one. The quantile risk measures are defined with respect to a stochastic benchmark and the expected utility-based constraint is applied to random payment dates. We explicit the Legendre-Fenchel transform of the pricing function. We also provide, for each quantile hedging problem, a backward dual algorithm allowing to compute their associated value function by backward recursion. The algorithms are illustrated with a numerical example.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"109 1\",\"pages\":\"222 - 256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2019.1638276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2019.1638276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Dual Representation of the Cost of Designing a Portfolio Satisfying Multiple Risk Constraints
ABSTRACT We consider, within a Markovian complete financial market, the problem of finding the least expensive portfolio process meeting, at each payment date, three different types of risk criterion. Two of them encompass an expected utility-based measure and a quantile hedging constraint imposed at inception on all the future payment dates, while the other one is a quantile hedging constraint set at each payment date over the next one. The quantile risk measures are defined with respect to a stochastic benchmark and the expected utility-based constraint is applied to random payment dates. We explicit the Legendre-Fenchel transform of the pricing function. We also provide, for each quantile hedging problem, a backward dual algorithm allowing to compute their associated value function by backward recursion. The algorithms are illustrated with a numerical example.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.