在英特尔异构计算节点上高效执行的系统过程

A. Rane, J. Browne, L. Koesterke
{"title":"在英特尔异构计算节点上高效执行的系统过程","authors":"A. Rane, J. Browne, L. Koesterke","doi":"10.1145/2335755.2335797","DOIUrl":null,"url":null,"abstract":"Heterogeneous architectures (mainstream CPUs with accelerators/co-processors) are expected to become more prevalent in high performance computing clusters. This paper deals specifically with attaining efficient execution on nodes which combine Intel's multicore Sandy Bridge chips with MIC manycore chips. The architecture and software stack for Intel's heterogeneous computation nodes attempt to make migration from the now common multicore chips to the many-core chips straightforward. However, specific execution characteristics are favored by these manycore chips such as making use of the wider vector instructions, minimal inter-thread conflicts, etc. Additionally manycore chips have lower clock speed and no unified last-level cache. As a result, and as we demonstrate in this paper, it will commonly be the case that not all parts of an application will execute more efficiently on the manycore chip than on the multicore chip. This paper presents a process, based on measurements of execution on Westmere-based multicore chips, which can accurately predict which code segments will execute efficiently on the manycore chips and illustrates and evaluates its application to three substantial full programs -- HOMME, MOIL and MILC. The effectiveness of the process is validated by verifying scalability of the specific functions and loops that were recommended for MIC execution on a Knights Ferry computation node.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"7 1","pages":"8:1-8:8"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A systematic process for efficient execution on Intel's heterogeneous computation nodes\",\"authors\":\"A. Rane, J. Browne, L. Koesterke\",\"doi\":\"10.1145/2335755.2335797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous architectures (mainstream CPUs with accelerators/co-processors) are expected to become more prevalent in high performance computing clusters. This paper deals specifically with attaining efficient execution on nodes which combine Intel's multicore Sandy Bridge chips with MIC manycore chips. The architecture and software stack for Intel's heterogeneous computation nodes attempt to make migration from the now common multicore chips to the many-core chips straightforward. However, specific execution characteristics are favored by these manycore chips such as making use of the wider vector instructions, minimal inter-thread conflicts, etc. Additionally manycore chips have lower clock speed and no unified last-level cache. As a result, and as we demonstrate in this paper, it will commonly be the case that not all parts of an application will execute more efficiently on the manycore chip than on the multicore chip. This paper presents a process, based on measurements of execution on Westmere-based multicore chips, which can accurately predict which code segments will execute efficiently on the manycore chips and illustrates and evaluates its application to three substantial full programs -- HOMME, MOIL and MILC. The effectiveness of the process is validated by verifying scalability of the specific functions and loops that were recommended for MIC execution on a Knights Ferry computation node.\",\"PeriodicalId\":93364,\"journal\":{\"name\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"volume\":\"7 1\",\"pages\":\"8:1-8:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2335755.2335797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2335755.2335797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

异构架构(带有加速器/协处理器的主流cpu)预计将在高性能计算集群中变得更加普遍。本文专门讨论了如何将英特尔多核Sandy Bridge芯片与MIC多核芯片相结合,在节点上实现高效执行。英特尔异构计算节点的架构和软件栈试图使从现在常见的多核芯片向多核芯片的迁移变得简单。然而,这些多核芯片更青睐特定的执行特性,例如利用更宽的矢量指令,最小化线程间冲突等。此外,多核芯片的时钟速度较低,没有统一的最后一级缓存。因此,正如我们在本文中所演示的那样,通常情况下,并非应用程序的所有部分在多核芯片上都比在多核芯片上更有效地执行。本文提出了一个基于westmere多核芯片执行测量的过程,该过程可以准确预测哪些代码段将在多核芯片上有效执行,并说明和评估了其在三个实质性完整程序(HOMME, MOIL和MILC)中的应用。通过验证在Knights Ferry计算节点上推荐的MIC执行的特定功能和循环的可扩展性,验证了该过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic process for efficient execution on Intel's heterogeneous computation nodes
Heterogeneous architectures (mainstream CPUs with accelerators/co-processors) are expected to become more prevalent in high performance computing clusters. This paper deals specifically with attaining efficient execution on nodes which combine Intel's multicore Sandy Bridge chips with MIC manycore chips. The architecture and software stack for Intel's heterogeneous computation nodes attempt to make migration from the now common multicore chips to the many-core chips straightforward. However, specific execution characteristics are favored by these manycore chips such as making use of the wider vector instructions, minimal inter-thread conflicts, etc. Additionally manycore chips have lower clock speed and no unified last-level cache. As a result, and as we demonstrate in this paper, it will commonly be the case that not all parts of an application will execute more efficiently on the manycore chip than on the multicore chip. This paper presents a process, based on measurements of execution on Westmere-based multicore chips, which can accurately predict which code segments will execute efficiently on the manycore chips and illustrates and evaluates its application to three substantial full programs -- HOMME, MOIL and MILC. The effectiveness of the process is validated by verifying scalability of the specific functions and loops that were recommended for MIC execution on a Knights Ferry computation node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信