{"title":"通过结构修正,提出了一种新的低溢出分配频率的通用方法","authors":"Zihao Liu, Jichao Pang, H. Ouyang, Guocheng Xie","doi":"10.1177/14613484231187818","DOIUrl":null,"url":null,"abstract":"By modifying the mass and stiffness parameters of a structure, a subset of its natural frequencies can be assigned. However, such an assignment is usually accompanied with changes of the remaining frequencies, known as ‘spillover’. Eigenvalue or frequency spillover often needs to be avoided in engineering. In this paper, a new and general method is proposed for assigning a subset of the natural frequencies of a structure with a low level of spillover through structural modifications. The method combines a multi-population genetic algorithm and a radial basis function neural network and is implemented in a MATLAB-PYTHON-ABAQUS data interaction system. It is suitable for theoretical models (for example, finite element models) of general structures. By means of three numerical examples, the ability of the method to assign subsets of frequencies to discrete and discretised continuous structures while maintaining low spillover is demonstrated.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new general method for assigning frequencies with low spillover through structural modifications\",\"authors\":\"Zihao Liu, Jichao Pang, H. Ouyang, Guocheng Xie\",\"doi\":\"10.1177/14613484231187818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By modifying the mass and stiffness parameters of a structure, a subset of its natural frequencies can be assigned. However, such an assignment is usually accompanied with changes of the remaining frequencies, known as ‘spillover’. Eigenvalue or frequency spillover often needs to be avoided in engineering. In this paper, a new and general method is proposed for assigning a subset of the natural frequencies of a structure with a low level of spillover through structural modifications. The method combines a multi-population genetic algorithm and a radial basis function neural network and is implemented in a MATLAB-PYTHON-ABAQUS data interaction system. It is suitable for theoretical models (for example, finite element models) of general structures. By means of three numerical examples, the ability of the method to assign subsets of frequencies to discrete and discretised continuous structures while maintaining low spillover is demonstrated.\",\"PeriodicalId\":56067,\"journal\":{\"name\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231187818\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231187818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
A new general method for assigning frequencies with low spillover through structural modifications
By modifying the mass and stiffness parameters of a structure, a subset of its natural frequencies can be assigned. However, such an assignment is usually accompanied with changes of the remaining frequencies, known as ‘spillover’. Eigenvalue or frequency spillover often needs to be avoided in engineering. In this paper, a new and general method is proposed for assigning a subset of the natural frequencies of a structure with a low level of spillover through structural modifications. The method combines a multi-population genetic algorithm and a radial basis function neural network and is implemented in a MATLAB-PYTHON-ABAQUS data interaction system. It is suitable for theoretical models (for example, finite element models) of general structures. By means of three numerical examples, the ability of the method to assign subsets of frequencies to discrete and discretised continuous structures while maintaining low spillover is demonstrated.
期刊介绍:
Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.