凸集热方程有限差分ADI格式的收敛性分析

B. Bialecki, Maxsymillian Dryja, R. Fernandes
{"title":"凸集热方程有限差分ADI格式的收敛性分析","authors":"B. Bialecki, Maxsymillian Dryja, R. Fernandes","doi":"10.1090/MCOM/3653","DOIUrl":null,"url":null,"abstract":"It is well known that for the heat equation on a rectangle, the finite difference alternating direction implicit (ADI) method converges with order two. For the first time in the literature, we bound errors of the finite difference ADI method for the heat equation on a convex set for which it is possible to construct a partition consistent with the boundary. Numerical results indicate that the ADI method may also work for some nonconvex sets for which it is possible to construct a partition consistent with the boundary.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"24 1","pages":"2757-2784"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of the finite difference ADI scheme for the heat equation on a convex set\",\"authors\":\"B. Bialecki, Maxsymillian Dryja, R. Fernandes\",\"doi\":\"10.1090/MCOM/3653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that for the heat equation on a rectangle, the finite difference alternating direction implicit (ADI) method converges with order two. For the first time in the literature, we bound errors of the finite difference ADI method for the heat equation on a convex set for which it is possible to construct a partition consistent with the boundary. Numerical results indicate that the ADI method may also work for some nonconvex sets for which it is possible to construct a partition consistent with the boundary.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"24 1\",\"pages\":\"2757-2784\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,对于矩形上的热方程,有限差分交替方向隐式(ADI)方法具有二阶收敛性。在文献中,我们首次对热方程的有限差分ADI法在凸集上的误差进行了定界,对于凸集可以构造与边界一致的分区。数值结果表明,该方法也适用于一些可以构造与边界一致的分区的非凸集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of the finite difference ADI scheme for the heat equation on a convex set
It is well known that for the heat equation on a rectangle, the finite difference alternating direction implicit (ADI) method converges with order two. For the first time in the literature, we bound errors of the finite difference ADI method for the heat equation on a convex set for which it is possible to construct a partition consistent with the boundary. Numerical results indicate that the ADI method may also work for some nonconvex sets for which it is possible to construct a partition consistent with the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信