基于概率假设密度滤波的MIMO雷达目标跟踪

J. D. Glass, A. Lanterman
{"title":"基于概率假设密度滤波的MIMO雷达目标跟踪","authors":"J. D. Glass, A. Lanterman","doi":"10.1109/AERO.2012.6187208","DOIUrl":null,"url":null,"abstract":"Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"38 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"MIMO radar target tracking using the probability hypothesis density filter\",\"authors\":\"J. D. Glass, A. Lanterman\",\"doi\":\"10.1109/AERO.2012.6187208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"38 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在广泛应用的多输入多输出(MIMO)雷达系统中,目标跟踪需要对多个传感器的多个测量数据进行联合处理。概率假设密度(PHD)过滤器提供了一个很有前途的框架来处理这些测量,因为它不需要任何测量到跟踪的关联。此外,由于缺乏显式的数据关联,PHD过滤器自然地处理多目标环境。我们在GTRI/ONR MIMO基准中实现了一个PHD滤波器,并将结果与基准的默认解决方案进行了比较。我们假设一个线性高斯目标模型,因此后验目标强度在任何时间步长都是高斯混合(GM)。在此假设下,PHD滤波器具有闭型递归,简化了目标状态提取。本文重点介绍了我们在MIMO基准测试中实现GM-PHD滤波器,以及实际问题,如轨道标记和在多传感器情况下应用滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIMO radar target tracking using the probability hypothesis density filter
Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信