Avril Manrique-Ascencio, G. Williams‐Linera, E. Badano
{"title":"墨西哥韦拉克鲁斯热带云雾林林冠隙和林下植被对幼苗的实验性干旱","authors":"Avril Manrique-Ascencio, G. Williams‐Linera, E. Badano","doi":"10.21829/abm129.2022.2009","DOIUrl":null,"url":null,"abstract":"Background and Aims: Droughts induced by climate change are expected to affect tropical cloud forests. As functional traits are useful indicators of plant species performance, this study aimed to determine the effect of light environment and drought on leaf area (LA), specific leaf area (SLA), chlorophyll content, leaf thickness and toughness, survival and relative growth rate (RGR) of seedlings in forest understory and gap.\nMethods: In a cloud forest from Veracruz, Mexico, rainout shelters to simulate drought in the forest understory and gap were used. Leaf area, SLA, chlorophyll content, leaf thickness and toughness, survival, and RGR in Eugenia capuli (shade-tolerant understory tree), Liquidambar styraciflua (intermediate shade-tolerant canopy tree), and Trema micranthum (pioneer tree that colonizes gaps) in understory-control and -drought, and gap-control and -drought were measured.\nKey results: Leaf area increased with drought in E. capuli in gaps and decreased in L. styraciflua in both light environments. Chlorophyll content was similar between water treatments for E. capuli and L. styraciflua in the understory. Leaf thickness and toughness differed with drought for E. capuli and L. styraciflua in the gap. Leaf traits of T. micranthum tended to change in understory and not in gap. Overall, the highest survival occurred in gap. Eugenia capuli displayed the highest and similar survival across treatments. Liquidambar styraciflua displayed higher survival in gap-drought, and T. micranthum in gap conditions. Eugenia capuli had the highest RGR in understory, whereas T. micranthum has the highest RGR in gap.\nConclusions: Plant functional traits of E. capuli and L. styraciflua seedlings responded to moderate drought more in gap than in understory. The results suggest that functional traits of intermediate and shade-tolerant species may shift less under a moderate drought than those of a pioneer tree, as long as the forest light environment is maintained.","PeriodicalId":50906,"journal":{"name":"Acta Botanica Mexicana","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental drought on seedlings in a canopy gap and understory of a tropical cloud forest, Veracruz, Mexico\",\"authors\":\"Avril Manrique-Ascencio, G. Williams‐Linera, E. Badano\",\"doi\":\"10.21829/abm129.2022.2009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Aims: Droughts induced by climate change are expected to affect tropical cloud forests. As functional traits are useful indicators of plant species performance, this study aimed to determine the effect of light environment and drought on leaf area (LA), specific leaf area (SLA), chlorophyll content, leaf thickness and toughness, survival and relative growth rate (RGR) of seedlings in forest understory and gap.\\nMethods: In a cloud forest from Veracruz, Mexico, rainout shelters to simulate drought in the forest understory and gap were used. Leaf area, SLA, chlorophyll content, leaf thickness and toughness, survival, and RGR in Eugenia capuli (shade-tolerant understory tree), Liquidambar styraciflua (intermediate shade-tolerant canopy tree), and Trema micranthum (pioneer tree that colonizes gaps) in understory-control and -drought, and gap-control and -drought were measured.\\nKey results: Leaf area increased with drought in E. capuli in gaps and decreased in L. styraciflua in both light environments. Chlorophyll content was similar between water treatments for E. capuli and L. styraciflua in the understory. Leaf thickness and toughness differed with drought for E. capuli and L. styraciflua in the gap. Leaf traits of T. micranthum tended to change in understory and not in gap. Overall, the highest survival occurred in gap. Eugenia capuli displayed the highest and similar survival across treatments. Liquidambar styraciflua displayed higher survival in gap-drought, and T. micranthum in gap conditions. Eugenia capuli had the highest RGR in understory, whereas T. micranthum has the highest RGR in gap.\\nConclusions: Plant functional traits of E. capuli and L. styraciflua seedlings responded to moderate drought more in gap than in understory. The results suggest that functional traits of intermediate and shade-tolerant species may shift less under a moderate drought than those of a pioneer tree, as long as the forest light environment is maintained.\",\"PeriodicalId\":50906,\"journal\":{\"name\":\"Acta Botanica Mexicana\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Botanica Mexicana\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.21829/abm129.2022.2009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Botanica Mexicana","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.21829/abm129.2022.2009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Experimental drought on seedlings in a canopy gap and understory of a tropical cloud forest, Veracruz, Mexico
Background and Aims: Droughts induced by climate change are expected to affect tropical cloud forests. As functional traits are useful indicators of plant species performance, this study aimed to determine the effect of light environment and drought on leaf area (LA), specific leaf area (SLA), chlorophyll content, leaf thickness and toughness, survival and relative growth rate (RGR) of seedlings in forest understory and gap.
Methods: In a cloud forest from Veracruz, Mexico, rainout shelters to simulate drought in the forest understory and gap were used. Leaf area, SLA, chlorophyll content, leaf thickness and toughness, survival, and RGR in Eugenia capuli (shade-tolerant understory tree), Liquidambar styraciflua (intermediate shade-tolerant canopy tree), and Trema micranthum (pioneer tree that colonizes gaps) in understory-control and -drought, and gap-control and -drought were measured.
Key results: Leaf area increased with drought in E. capuli in gaps and decreased in L. styraciflua in both light environments. Chlorophyll content was similar between water treatments for E. capuli and L. styraciflua in the understory. Leaf thickness and toughness differed with drought for E. capuli and L. styraciflua in the gap. Leaf traits of T. micranthum tended to change in understory and not in gap. Overall, the highest survival occurred in gap. Eugenia capuli displayed the highest and similar survival across treatments. Liquidambar styraciflua displayed higher survival in gap-drought, and T. micranthum in gap conditions. Eugenia capuli had the highest RGR in understory, whereas T. micranthum has the highest RGR in gap.
Conclusions: Plant functional traits of E. capuli and L. styraciflua seedlings responded to moderate drought more in gap than in understory. The results suggest that functional traits of intermediate and shade-tolerant species may shift less under a moderate drought than those of a pioneer tree, as long as the forest light environment is maintained.
期刊介绍:
Acta Botanica Mexicana da a conocer trabajos originales e inéditos en todas las áreas de la botánica, incluyendo florística, taxonomía, taxones nuevos para la ciencia, ecología, etnobotánica, paleontología, evolución, conservación, etc. Está dirigida a botánicos mexicanos y extranjeros que aporten información en estas áreas del conocimiento, particularmente con plantas nativas del continente americano. Hasta 2018 apareció cuatro veces al año con una periodicidad estricta en la primera semana de enero, abril, julio y octubre; a partir de 2019 se publica de manera continua, sin periodicidad preestablecida, en formato electrónico y de forma gratuita.