在基于传输器的机器上应用广义共轭扩张算法求解流体流动

B.A. Tanyi, R.W. Thatcher
{"title":"在基于传输器的机器上应用广义共轭扩张算法求解流体流动","authors":"B.A. Tanyi,&nbsp;R.W. Thatcher","doi":"10.1016/0956-0521(95)00026-7","DOIUrl":null,"url":null,"abstract":"<div><p>The discretisation of the equations governing fluid flow gives rise to coupled, quasi-linear and non-symmetric systems. The solution is usually obtained by iteration using a guess-and-correct procedure where each iteration aims to improve the solution of the previous step. Each step or outer iteration of the process involves the solution of nominally linear algebraic systems. These systems are normally solved using methods based on the Gauss-Seidel iteration—such as the TDMA. However, these methods generally converge very slowly and can be very time consuming for realistic applications. In this paper, these equations are solved using the Generalised Conjugate Gradient (GCG) algorithm with a simple-to-implement Gauss-Seidel-based preconditioner on a distributed memory message-passing machine. We take advantage of the fact that only tentative improvements to the flow-field are sought during each iteration and study the convergence behaviour of the parallel implementation on a multi-processor environment.</p></div>","PeriodicalId":100325,"journal":{"name":"Computing Systems in Engineering","volume":"6 4","pages":"Pages 319-324"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-0521(95)00026-7","citationCount":"0","resultStr":"{\"title\":\"Efficient solution of fluid flow using the generalised conjugate grandient algorithm on a transputer-based machine\",\"authors\":\"B.A. Tanyi,&nbsp;R.W. Thatcher\",\"doi\":\"10.1016/0956-0521(95)00026-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The discretisation of the equations governing fluid flow gives rise to coupled, quasi-linear and non-symmetric systems. The solution is usually obtained by iteration using a guess-and-correct procedure where each iteration aims to improve the solution of the previous step. Each step or outer iteration of the process involves the solution of nominally linear algebraic systems. These systems are normally solved using methods based on the Gauss-Seidel iteration—such as the TDMA. However, these methods generally converge very slowly and can be very time consuming for realistic applications. In this paper, these equations are solved using the Generalised Conjugate Gradient (GCG) algorithm with a simple-to-implement Gauss-Seidel-based preconditioner on a distributed memory message-passing machine. We take advantage of the fact that only tentative improvements to the flow-field are sought during each iteration and study the convergence behaviour of the parallel implementation on a multi-processor environment.</p></div>\",\"PeriodicalId\":100325,\"journal\":{\"name\":\"Computing Systems in Engineering\",\"volume\":\"6 4\",\"pages\":\"Pages 319-324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0956-0521(95)00026-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing Systems in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0956052195000267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Systems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956052195000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

控制流体流动的方程的离散化产生耦合的、准线性的和非对称的系统。解决方案通常是通过使用猜测和正确的过程迭代获得的,其中每次迭代的目的是改进前一步的解决方案。该过程的每一步或外部迭代都涉及到名义上线性代数系统的解。这些系统通常使用基于高斯-塞德尔迭代的方法来解决,例如TDMA。然而,这些方法通常收敛速度很慢,并且在实际应用中非常耗时。本文在一个分布式内存消息传递机上,利用广义共轭梯度(GCG)算法和一个简单实现的基于gauss - seidel的预条件来求解这些方程。利用每次迭代只对流场进行尝试性改进的特点,研究了并行实现在多处理器环境下的收敛行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient solution of fluid flow using the generalised conjugate grandient algorithm on a transputer-based machine

The discretisation of the equations governing fluid flow gives rise to coupled, quasi-linear and non-symmetric systems. The solution is usually obtained by iteration using a guess-and-correct procedure where each iteration aims to improve the solution of the previous step. Each step or outer iteration of the process involves the solution of nominally linear algebraic systems. These systems are normally solved using methods based on the Gauss-Seidel iteration—such as the TDMA. However, these methods generally converge very slowly and can be very time consuming for realistic applications. In this paper, these equations are solved using the Generalised Conjugate Gradient (GCG) algorithm with a simple-to-implement Gauss-Seidel-based preconditioner on a distributed memory message-passing machine. We take advantage of the fact that only tentative improvements to the flow-field are sought during each iteration and study the convergence behaviour of the parallel implementation on a multi-processor environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信