非回溯随机漫步的Kemeny常数

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jane Breen, Nolan Faught, C. Glover, Mark Kempton, Adam Knudson, A. Oveson
{"title":"非回溯随机漫步的Kemeny常数","authors":"Jane Breen, Nolan Faught, C. Glover, Mark Kempton, Adam Knudson, A. Oveson","doi":"10.1002/rsa.21144","DOIUrl":null,"url":null,"abstract":"Kemeny's constant for a connected graph G$$ G $$ is the expected time for a random walk to reach a randomly chosen vertex u$$ u $$ , regardless of the choice of the initial vertex. We extend the definition of Kemeny's constant to nonbacktracking random walks and compare it to Kemeny's constant for simple random walks. We explore the relationship between these two parameters for several families of graphs and provide closed‐form expressions for regular and biregular graphs. In nearly all cases, the nonbacktracking variant yields the smaller Kemeny's constant.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"59 1","pages":"343 - 363"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kemeny's constant for nonbacktracking random walks\",\"authors\":\"Jane Breen, Nolan Faught, C. Glover, Mark Kempton, Adam Knudson, A. Oveson\",\"doi\":\"10.1002/rsa.21144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kemeny's constant for a connected graph G$$ G $$ is the expected time for a random walk to reach a randomly chosen vertex u$$ u $$ , regardless of the choice of the initial vertex. We extend the definition of Kemeny's constant to nonbacktracking random walks and compare it to Kemeny's constant for simple random walks. We explore the relationship between these two parameters for several families of graphs and provide closed‐form expressions for regular and biregular graphs. In nearly all cases, the nonbacktracking variant yields the smaller Kemeny's constant.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"59 1\",\"pages\":\"343 - 363\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21144\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21144","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

连通图G $$ G $$的Kemeny常数是随机行走到达随机选择的顶点u $$ u $$的期望时间,与初始顶点的选择无关。我们将Kemeny常数的定义扩展到非回溯随机漫步,并将其与简单随机漫步的Kemeny常数进行比较。我们探讨了几个图族的这两个参数之间的关系,并提供了正则图和双正则图的封闭形式表达式。在几乎所有情况下,非回溯的变体产生较小的凯美尼常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kemeny's constant for nonbacktracking random walks
Kemeny's constant for a connected graph G$$ G $$ is the expected time for a random walk to reach a randomly chosen vertex u$$ u $$ , regardless of the choice of the initial vertex. We extend the definition of Kemeny's constant to nonbacktracking random walks and compare it to Kemeny's constant for simple random walks. We explore the relationship between these two parameters for several families of graphs and provide closed‐form expressions for regular and biregular graphs. In nearly all cases, the nonbacktracking variant yields the smaller Kemeny's constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信