自主FDEs的线性稳定性和基本再现数

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Xiao-Qiang Zhao
{"title":"自主FDEs的线性稳定性和基本再现数","authors":"Xiao-Qiang Zhao","doi":"10.3934/dcdss.2023082","DOIUrl":null,"url":null,"abstract":"In this paper, we first prove the stability equivalence between a linear autonomous and cooperative functional differential equation (FDE) and its associated autonomous and cooperative system without time delay. Then we present the theory of basic reproduction number $\\mathcal{R}_0$ for general autonomous FDEs. As an illustrative example, we also establish the threshold dynamics for a time-delayed population model of black-legged ticks in terms of $\\mathcal{R}_0$.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The linear stability and basic reproduction numbers for autonomous FDEs\",\"authors\":\"Xiao-Qiang Zhao\",\"doi\":\"10.3934/dcdss.2023082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first prove the stability equivalence between a linear autonomous and cooperative functional differential equation (FDE) and its associated autonomous and cooperative system without time delay. Then we present the theory of basic reproduction number $\\\\mathcal{R}_0$ for general autonomous FDEs. As an illustrative example, we also establish the threshold dynamics for a time-delayed population model of black-legged ticks in terms of $\\\\mathcal{R}_0$.\",\"PeriodicalId\":48838,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems-Series S\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems-Series S\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2023082\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcdss.2023082","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文首先证明了一类线性自治合作泛函微分方程(FDE)及其关联的无时滞自治合作系统的稳定性等价性。然后给出了一般自治fde的基本再生数$\mathcal{R}_0$的理论。作为一个示例,我们还建立了基于$\mathcal{R}_0$的延时黑腿蜱种群模型的阈值动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The linear stability and basic reproduction numbers for autonomous FDEs
In this paper, we first prove the stability equivalence between a linear autonomous and cooperative functional differential equation (FDE) and its associated autonomous and cooperative system without time delay. Then we present the theory of basic reproduction number $\mathcal{R}_0$ for general autonomous FDEs. As an illustrative example, we also establish the threshold dynamics for a time-delayed population model of black-legged ticks in terms of $\mathcal{R}_0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.60%
发文量
177
期刊介绍: Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信