接触柄,对偶性和缝合花同源性

IF 2 1区 数学
Andr'as Juh'asz, Ian Zemke
{"title":"接触柄,对偶性和缝合花同源性","authors":"Andr'as Juh'asz, Ian Zemke","doi":"10.2140/gt.2020.24.179","DOIUrl":null,"url":null,"abstract":"We give an explicit construction of the Honda--Kazez--Mati\\'c gluing maps in terms of contact handles. We use this to prove a duality result for turning a sutured manifold cobordism around, and to compute the trace in the sutured Floer TQFT. We also show that the decorated link cobordism maps on the hat version of link Floer homology defined by the first author via sutured manifold cobordisms and by the second author via elementary cobordisms agree.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"224 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Contact handles, duality, and sutured Floer homology\",\"authors\":\"Andr'as Juh'asz, Ian Zemke\",\"doi\":\"10.2140/gt.2020.24.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit construction of the Honda--Kazez--Mati\\\\'c gluing maps in terms of contact handles. We use this to prove a duality result for turning a sutured manifold cobordism around, and to compute the trace in the sutured Floer TQFT. We also show that the decorated link cobordism maps on the hat version of link Floer homology defined by the first author via sutured manifold cobordisms and by the second author via elementary cobordisms agree.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"224 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2020.24.179\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.179","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们给出了一个明确的结构本田-Kazez- Mati 'c胶地图的接触手柄。我们用它证明了一个对偶的结果,使一个缝合流形的协数转过来,并计算了缝合的Floer TQFT中的迹线。我们还证明了由第一作者通过缝合流形配合定义和第二作者通过初等配合定义的修饰连杆配合映射在连杆Floer同调的那个版本上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contact handles, duality, and sutured Floer homology
We give an explicit construction of the Honda--Kazez--Mati\'c gluing maps in terms of contact handles. We use this to prove a duality result for turning a sutured manifold cobordism around, and to compute the trace in the sutured Floer TQFT. We also show that the decorated link cobordism maps on the hat version of link Floer homology defined by the first author via sutured manifold cobordisms and by the second author via elementary cobordisms agree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信