超声波外差传输到人的听觉和前庭系统

C. Dumm, Anna C. Hiers, J. Vipperman, G. Klinzing, C. Balaban
{"title":"超声波外差传输到人的听觉和前庭系统","authors":"C. Dumm, Anna C. Hiers, J. Vipperman, G. Klinzing, C. Balaban","doi":"10.1115/IMECE2020-24213","DOIUrl":null,"url":null,"abstract":"\n It is well-known that airborne sound induces vibration of the eardrum, the coupled middle ear bones, and the inner ear. Sound transmission to the inner ear is attenuated by damage or dysfunction in the eardrum or ossicular chain. Corrective devices often use contact shakers to directly vibrate the temporal bone of the skull, delivering sound. We investigate an alternative, noncontact method of sound transmission that uses ultrasonic signals to transmit sound into the auditory and vestibular systems. Minimal literature exists describing ultrasonic hearing, largely due to attenuation of air-conducted frequencies above 20 kHz. High-amplitude airborne sound incident upon the skull can induce temporal bone system vibrations along an unconventional structural path. Finite-element-based acoustic modeling of the auditory and vestibular anatomy reveals resonant behavior in structural components of the middle and inner ear at ultrasonic frequencies. These “built-in sound amplifiers” can be leveraged to compensate for impedance mismatches experienced in airborne ultrasound transmission. By heterodyning (amplitude modulating) a targeted ultrasonic carrier signal with an audio signal, the nonlinearities of acoustic propagation and the auditory and vestibular sense organs allow interpretation of heterodyne signals. These techniques provide a foundation to improve a wide variety of communication equipment, including hearing aids, without interfering with balance sensations.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic Acoustic Heterodyne Transmission Into the Human Auditory and Vestibular Systems\",\"authors\":\"C. Dumm, Anna C. Hiers, J. Vipperman, G. Klinzing, C. Balaban\",\"doi\":\"10.1115/IMECE2020-24213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n It is well-known that airborne sound induces vibration of the eardrum, the coupled middle ear bones, and the inner ear. Sound transmission to the inner ear is attenuated by damage or dysfunction in the eardrum or ossicular chain. Corrective devices often use contact shakers to directly vibrate the temporal bone of the skull, delivering sound. We investigate an alternative, noncontact method of sound transmission that uses ultrasonic signals to transmit sound into the auditory and vestibular systems. Minimal literature exists describing ultrasonic hearing, largely due to attenuation of air-conducted frequencies above 20 kHz. High-amplitude airborne sound incident upon the skull can induce temporal bone system vibrations along an unconventional structural path. Finite-element-based acoustic modeling of the auditory and vestibular anatomy reveals resonant behavior in structural components of the middle and inner ear at ultrasonic frequencies. These “built-in sound amplifiers” can be leveraged to compensate for impedance mismatches experienced in airborne ultrasound transmission. By heterodyning (amplitude modulating) a targeted ultrasonic carrier signal with an audio signal, the nonlinearities of acoustic propagation and the auditory and vestibular sense organs allow interpretation of heterodyne signals. These techniques provide a foundation to improve a wide variety of communication equipment, including hearing aids, without interfering with balance sensations.\",\"PeriodicalId\":23648,\"journal\":{\"name\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2020-24213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-24213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,空气中的声音会引起鼓膜、耦合的中耳骨和内耳的振动。由于鼓膜或听骨链的损伤或功能障碍,声音向内耳的传输减弱。矫正装置通常使用接触式振动器直接振动颅骨的颞骨,发出声音。我们研究了一种替代的、非接触的声音传输方法,它使用超声波信号将声音传输到听觉和前庭系统。描述超声波听力的文献很少,主要是由于空气传导频率在20千赫以上的衰减。高振幅的空气声入射颅骨可以诱导颞骨系统振动沿非常规的结构路径。基于有限元的听觉和前庭解剖声学模型揭示了超声频率下中耳和内耳结构部件的共振行为。这些“内置声音放大器”可以用来补偿机载超声传输中遇到的阻抗不匹配。通过外差(振幅调制)的目标超声载波信号与音频信号,非线性的声音传播和听觉和前庭感觉器官允许外差信号的解释。这些技术为改进包括助听器在内的各种通信设备奠定了基础,同时又不会干扰平衡感觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasonic Acoustic Heterodyne Transmission Into the Human Auditory and Vestibular Systems
It is well-known that airborne sound induces vibration of the eardrum, the coupled middle ear bones, and the inner ear. Sound transmission to the inner ear is attenuated by damage or dysfunction in the eardrum or ossicular chain. Corrective devices often use contact shakers to directly vibrate the temporal bone of the skull, delivering sound. We investigate an alternative, noncontact method of sound transmission that uses ultrasonic signals to transmit sound into the auditory and vestibular systems. Minimal literature exists describing ultrasonic hearing, largely due to attenuation of air-conducted frequencies above 20 kHz. High-amplitude airborne sound incident upon the skull can induce temporal bone system vibrations along an unconventional structural path. Finite-element-based acoustic modeling of the auditory and vestibular anatomy reveals resonant behavior in structural components of the middle and inner ear at ultrasonic frequencies. These “built-in sound amplifiers” can be leveraged to compensate for impedance mismatches experienced in airborne ultrasound transmission. By heterodyning (amplitude modulating) a targeted ultrasonic carrier signal with an audio signal, the nonlinearities of acoustic propagation and the auditory and vestibular sense organs allow interpretation of heterodyne signals. These techniques provide a foundation to improve a wide variety of communication equipment, including hearing aids, without interfering with balance sensations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信