关于在球上滚动的球的注释:具有不变测度的可积Chaplygin系统,没有Chaplygin哈密顿化

IF 0.7 Q4 MECHANICS
B. Jovanović
{"title":"关于在球上滚动的球的注释:具有不变测度的可积Chaplygin系统,没有Chaplygin哈密顿化","authors":"B. Jovanović","doi":"10.2298/TAM190322003J","DOIUrl":null,"url":null,"abstract":"In this note we consider the nonholonomic problem of rolling without slipping and twisting of an ??-dimensional balanced ball over a fixed sphere. This is a ????(??)?Chaplygin system with an invariant measure that reduces to the cotangent bundle ??*?????1. For the rigid body inertia operator r I? = I? + ?I, I = diag(I1,...,In) with a symmetry I1 = I2 = ... =Ir ? Ir+1 = Ir+2 = ... = In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for ?? ? 1, ?? ? 1 the Chaplygin reducing multiplier method does not apply.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Note on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin hamiltonization\",\"authors\":\"B. Jovanović\",\"doi\":\"10.2298/TAM190322003J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we consider the nonholonomic problem of rolling without slipping and twisting of an ??-dimensional balanced ball over a fixed sphere. This is a ????(??)?Chaplygin system with an invariant measure that reduces to the cotangent bundle ??*?????1. For the rigid body inertia operator r I? = I? + ?I, I = diag(I1,...,In) with a symmetry I1 = I2 = ... =Ir ? Ir+1 = Ir+2 = ... = In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for ?? ? 1, ?? ? 1 the Chaplygin reducing multiplier method does not apply.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM190322003J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM190322003J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 9

摘要

在这篇笔记中,我们考虑无滑移和无扭转的滚动的非完整问题。在一个固定的球体上放置一个多维平衡球。这是一个????(?? ?)?具有减小到余切束的不变测度的Chaplygin系统??*?????1。对于刚体惯性算子r1 ?=我?+ ?I, I = diag(I1,…,In)具有对称性I1 = I2 =…=红外?Ir+1 = Ir+2 =…在,我们证明了简化系统是可积的,一般轨迹是拟周期的,而对于??? 1, ? ?? 1 . Chaplygin减少乘数法不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin hamiltonization
In this note we consider the nonholonomic problem of rolling without slipping and twisting of an ??-dimensional balanced ball over a fixed sphere. This is a ????(??)?Chaplygin system with an invariant measure that reduces to the cotangent bundle ??*?????1. For the rigid body inertia operator r I? = I? + ?I, I = diag(I1,...,In) with a symmetry I1 = I2 = ... =Ir ? Ir+1 = Ir+2 = ... = In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for ?? ? 1, ?? ? 1 the Chaplygin reducing multiplier method does not apply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信