{"title":"关于在球上滚动的球的注释:具有不变测度的可积Chaplygin系统,没有Chaplygin哈密顿化","authors":"B. Jovanović","doi":"10.2298/TAM190322003J","DOIUrl":null,"url":null,"abstract":"In this note we consider the nonholonomic problem of rolling without slipping and twisting of an ??-dimensional balanced ball over a fixed sphere. This is a ????(??)?Chaplygin system with an invariant measure that reduces to the cotangent bundle ??*?????1. For the rigid body inertia operator r I? = I? + ?I, I = diag(I1,...,In) with a symmetry I1 = I2 = ... =Ir ? Ir+1 = Ir+2 = ... = In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for ?? ? 1, ?? ? 1 the Chaplygin reducing multiplier method does not apply.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Note on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin hamiltonization\",\"authors\":\"B. Jovanović\",\"doi\":\"10.2298/TAM190322003J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we consider the nonholonomic problem of rolling without slipping and twisting of an ??-dimensional balanced ball over a fixed sphere. This is a ????(??)?Chaplygin system with an invariant measure that reduces to the cotangent bundle ??*?????1. For the rigid body inertia operator r I? = I? + ?I, I = diag(I1,...,In) with a symmetry I1 = I2 = ... =Ir ? Ir+1 = Ir+2 = ... = In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for ?? ? 1, ?? ? 1 the Chaplygin reducing multiplier method does not apply.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM190322003J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM190322003J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Note on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin hamiltonization
In this note we consider the nonholonomic problem of rolling without slipping and twisting of an ??-dimensional balanced ball over a fixed sphere. This is a ????(??)?Chaplygin system with an invariant measure that reduces to the cotangent bundle ??*?????1. For the rigid body inertia operator r I? = I? + ?I, I = diag(I1,...,In) with a symmetry I1 = I2 = ... =Ir ? Ir+1 = Ir+2 = ... = In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for ?? ? 1, ?? ? 1 the Chaplygin reducing multiplier method does not apply.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.