{"title":"脂质双层中鞘糖脂的结构和动力学:来自分子动力学模拟的见解","authors":"Ronak Y. Patel, P. V. Balaji","doi":"10.1155/2011/950256","DOIUrl":null,"url":null,"abstract":"Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"40 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Structure and Dynamics of Glycosphingolipids in Lipid Bilayers: Insights from Molecular Dynamics Simulations\",\"authors\":\"Ronak Y. Patel, P. V. Balaji\",\"doi\":\"10.1155/2011/950256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.\",\"PeriodicalId\":13788,\"journal\":{\"name\":\"International Journal of Carbohydrate Chemistry\",\"volume\":\"40 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Carbohydrate Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/950256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Carbohydrate Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/950256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure and Dynamics of Glycosphingolipids in Lipid Bilayers: Insights from Molecular Dynamics Simulations
Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.