从从一开始就是从一开始就是从一开始就是从一开始就是从一开始

Teknika Pub Date : 2022-06-16 DOI:10.34148/teknika.v11i2.471
Fadli Aziz Setiawan, M. Sadikin, Emil R Kaburuan
{"title":"从从一开始就是从一开始就是从一开始就是从一开始就是从一开始","authors":"Fadli Aziz Setiawan, M. Sadikin, Emil R Kaburuan","doi":"10.34148/teknika.v11i2.471","DOIUrl":null,"url":null,"abstract":"Amido Makmor Tulus Sejati merupakan perusahaan distributor multifunction printer merek Kyocera di Indonesia. Evaluasi kinerja teknisi diperlukan untuk mempertahankan kepuasan customer terhadap penggunaan multifunction printer Kyocera. Proses penilaian kinerja teknisi masih dilakukan secara manual yang mengakibatkan hasil evaluasi kinerja teknisi yang diberikan kurang akurat atau kurang maksimal, sehingga perlu dilakukan suatu teknik pengolahan data secara cepat dan lebih akurat. Salah satunya dengan mempergunakan teknik data mining dengan menggunakan metode algoritma clustering. Metode algoritma clustering dipergunakan untuk mengelompokkan problem yang sering terjadi berdasarkan tipe mesin multifunction printer Kyocera. Pada penelitian ini diterapkan algoritma clustering K-Means dan K-Medoids, yang kemudian dilakukan uji clustering yang optimal dengan mempergunakan Metode Elbow dan Silhouette Score. Data yang dipergunakan dalam penelitian ini sebanyak 1.620 instan yang merupakan Data Kuantitatif. Proses untuk mencari nilai clustering yang optimal dilakukan dengan mencari rata-rata Silhouette Score dan Nilai Kemurnian dengan sisi luar dari algoritma K-Means dan K-Medoids. Hasil penelitian ini menunjukkan bahwa jumlah cluster optimal adalah 2 (dua) untuk algoritma K-Means dengan nilai Silhouette Score 0,606 dan jumlah cluster optimal 4 (empat) untuk algoritma K-Medoids dengan nilai Silhouette Score 0,240.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Permasalahan Perangkat Pencetak Menggunakan Metode Algoritma K-Means dan K-Medoids\",\"authors\":\"Fadli Aziz Setiawan, M. Sadikin, Emil R Kaburuan\",\"doi\":\"10.34148/teknika.v11i2.471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amido Makmor Tulus Sejati merupakan perusahaan distributor multifunction printer merek Kyocera di Indonesia. Evaluasi kinerja teknisi diperlukan untuk mempertahankan kepuasan customer terhadap penggunaan multifunction printer Kyocera. Proses penilaian kinerja teknisi masih dilakukan secara manual yang mengakibatkan hasil evaluasi kinerja teknisi yang diberikan kurang akurat atau kurang maksimal, sehingga perlu dilakukan suatu teknik pengolahan data secara cepat dan lebih akurat. Salah satunya dengan mempergunakan teknik data mining dengan menggunakan metode algoritma clustering. Metode algoritma clustering dipergunakan untuk mengelompokkan problem yang sering terjadi berdasarkan tipe mesin multifunction printer Kyocera. Pada penelitian ini diterapkan algoritma clustering K-Means dan K-Medoids, yang kemudian dilakukan uji clustering yang optimal dengan mempergunakan Metode Elbow dan Silhouette Score. Data yang dipergunakan dalam penelitian ini sebanyak 1.620 instan yang merupakan Data Kuantitatif. Proses untuk mencari nilai clustering yang optimal dilakukan dengan mencari rata-rata Silhouette Score dan Nilai Kemurnian dengan sisi luar dari algoritma K-Means dan K-Medoids. Hasil penelitian ini menunjukkan bahwa jumlah cluster optimal adalah 2 (dua) untuk algoritma K-Means dengan nilai Silhouette Score 0,606 dan jumlah cluster optimal 4 (empat) untuk algoritma K-Medoids dengan nilai Silhouette Score 0,240.\",\"PeriodicalId\":52620,\"journal\":{\"name\":\"Teknika\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34148/teknika.v11i2.471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34148/teknika.v11i2.471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Amido Makmor是印尼一家多功能打印机制造商Kyocera的公司。使用多功能打印机Kyocera需要对技术人员绩效评估,以保持客户满意度。技术人员绩效评估的过程仍然是手工完成的,从而导致技术人员绩效评估的结果要么不那么准确,要么更不准确。一种方法是使用数据挖掘技术,使用clustering算法方法。方法clustering算法用于将通常发生的问题分组,这些问题是基于一个多功能打印机Kyocera。在这项研究中应用了K-Medoids和K-Medoids算法,然后通过使用肘部和剪发分数进行了最优的clustering测试。这项研究使用的数据多达1620个,这是定量数据。搜索最佳的聚类值的过程是搜索平均剪发分数和分数的纯洁性,其算法从从一开始就是从从一开始就是从从一开始就是从一开始。研究结果表明,最佳星系团的数量是2(2)用于剪影分数0.606的k -意为算法,而在剪影分数为0.240的K-Medoids中,最佳星系团数量为4(4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Permasalahan Perangkat Pencetak Menggunakan Metode Algoritma K-Means dan K-Medoids
Amido Makmor Tulus Sejati merupakan perusahaan distributor multifunction printer merek Kyocera di Indonesia. Evaluasi kinerja teknisi diperlukan untuk mempertahankan kepuasan customer terhadap penggunaan multifunction printer Kyocera. Proses penilaian kinerja teknisi masih dilakukan secara manual yang mengakibatkan hasil evaluasi kinerja teknisi yang diberikan kurang akurat atau kurang maksimal, sehingga perlu dilakukan suatu teknik pengolahan data secara cepat dan lebih akurat. Salah satunya dengan mempergunakan teknik data mining dengan menggunakan metode algoritma clustering. Metode algoritma clustering dipergunakan untuk mengelompokkan problem yang sering terjadi berdasarkan tipe mesin multifunction printer Kyocera. Pada penelitian ini diterapkan algoritma clustering K-Means dan K-Medoids, yang kemudian dilakukan uji clustering yang optimal dengan mempergunakan Metode Elbow dan Silhouette Score. Data yang dipergunakan dalam penelitian ini sebanyak 1.620 instan yang merupakan Data Kuantitatif. Proses untuk mencari nilai clustering yang optimal dilakukan dengan mencari rata-rata Silhouette Score dan Nilai Kemurnian dengan sisi luar dari algoritma K-Means dan K-Medoids. Hasil penelitian ini menunjukkan bahwa jumlah cluster optimal adalah 2 (dua) untuk algoritma K-Means dengan nilai Silhouette Score 0,606 dan jumlah cluster optimal 4 (empat) untuk algoritma K-Medoids dengan nilai Silhouette Score 0,240.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信