{"title":"通过出口桥接洋葱服务绕过Tor出口阻塞","authors":"Zhao Zhang, Wenchao Zhou, M. Sherr","doi":"10.1145/3372297.3417245","DOIUrl":null,"url":null,"abstract":"Tor exit blocking, in which websites disallow clients arriving from Tor, is a growing and potentially existential threat to the anonymity network. This paper introduces HebTor, a new and robust architecture for exit bridges---short-lived proxies that serve as alternative egress points for Tor. A key insight of HebTor is that exit bridges can operate as Tor onion services, allowing any device that can create outbound TCP connections to serve as an exit bridge, regardless of the presence of NATs and/or firewalls. HebTor employs a micropayment system that compensates exit bridge operators for their services, and a privacy-preserving reputation scheme that prevents freeloading. We show that HebTor effectively thwarts server-side blocking of Tor, and we describe the security, privacy, and legal implications of our design.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bypassing Tor Exit Blocking with Exit Bridge Onion Services\",\"authors\":\"Zhao Zhang, Wenchao Zhou, M. Sherr\",\"doi\":\"10.1145/3372297.3417245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tor exit blocking, in which websites disallow clients arriving from Tor, is a growing and potentially existential threat to the anonymity network. This paper introduces HebTor, a new and robust architecture for exit bridges---short-lived proxies that serve as alternative egress points for Tor. A key insight of HebTor is that exit bridges can operate as Tor onion services, allowing any device that can create outbound TCP connections to serve as an exit bridge, regardless of the presence of NATs and/or firewalls. HebTor employs a micropayment system that compensates exit bridge operators for their services, and a privacy-preserving reputation scheme that prevents freeloading. We show that HebTor effectively thwarts server-side blocking of Tor, and we describe the security, privacy, and legal implications of our design.\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bypassing Tor Exit Blocking with Exit Bridge Onion Services
Tor exit blocking, in which websites disallow clients arriving from Tor, is a growing and potentially existential threat to the anonymity network. This paper introduces HebTor, a new and robust architecture for exit bridges---short-lived proxies that serve as alternative egress points for Tor. A key insight of HebTor is that exit bridges can operate as Tor onion services, allowing any device that can create outbound TCP connections to serve as an exit bridge, regardless of the presence of NATs and/or firewalls. HebTor employs a micropayment system that compensates exit bridge operators for their services, and a privacy-preserving reputation scheme that prevents freeloading. We show that HebTor effectively thwarts server-side blocking of Tor, and we describe the security, privacy, and legal implications of our design.