可计算可枚举度的层次结构

IF 0.7 3区 数学 Q1 LOGIC
R. Downey, Noam Greenberg
{"title":"可计算可枚举度的层次结构","authors":"R. Downey, Noam Greenberg","doi":"10.1017/BSL.2017.41","DOIUrl":null,"url":null,"abstract":"We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of ∆2 functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jocksuch and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"41 1","pages":"53-89"},"PeriodicalIF":0.7000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Hierarchy of computably Enumerable Degrees\",\"authors\":\"R. Downey, Noam Greenberg\",\"doi\":\"10.1017/BSL.2017.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of ∆2 functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jocksuch and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable\",\"PeriodicalId\":55307,\"journal\":{\"name\":\"Bulletin of Symbolic Logic\",\"volume\":\"41 1\",\"pages\":\"53-89\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/BSL.2017.41\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Symbolic Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/BSL.2017.41","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 4

摘要

我们引入了一种新的可计算枚举度的层次结构。这个层次是基于测量∆2函数近似复杂度的可计算有序符号。在可计算理论中,层次结构统一和分类了许多不同结构的组合。它按照高度数(Martin)和数组不可计算度数(Downey, Jocksuch和Stob)的顺序进行操作。层次结构还给出了一些自然的可定义性结果,包括一个可定义的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hierarchy of computably Enumerable Degrees
We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of ∆2 functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jocksuch and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
32
审稿时长
>12 weeks
期刊介绍: The Bulletin of Symbolic Logic was established in 1995 by the Association for Symbolic Logic to provide a journal of high standards that would be both accessible and of interest to as wide an audience as possible. It is designed to cover all areas within the purview of the ASL: mathematical logic and its applications, philosophical and non-classical logic and its applications, history and philosophy of logic, and philosophy and methodology of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信