{"title":"量子k理论中的对数积公式","authors":"You-Cheng Chou, Leo Herr, Yuan-Pin Lee","doi":"10.1017/S0305004123000063","DOIUrl":null,"url":null,"abstract":"Abstract We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties \n$V \\times W$\n in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifying their various functorial properties. We introduce a log version of K-theory and prove the formula there as well.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"34 1","pages":"225 - 252"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Log Product Formula in Quantum K-theory\",\"authors\":\"You-Cheng Chou, Leo Herr, Yuan-Pin Lee\",\"doi\":\"10.1017/S0305004123000063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties \\n$V \\\\times W$\\n in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifying their various functorial properties. We introduce a log version of K-theory and prove the formula there as well.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"34 1\",\"pages\":\"225 - 252\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004123000063\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000063","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties
$V \times W$
in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifying their various functorial properties. We introduce a log version of K-theory and prove the formula there as well.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.