三维均匀生成树的无限碰撞特性

IF 0.3 Q4 MATHEMATICS, APPLIED
Satomi Watanabe
{"title":"三维均匀生成树的无限碰撞特性","authors":"Satomi Watanabe","doi":"10.1142/s2661335223500053","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{U}$ be the uniform spanning tree on $\\mathbb{Z}^3$, whose probability law is denoted by $\\mathbf{P}$. For $\\mathbf{P}$-a.s. realization of $\\mathcal{U}$, the recurrence of the the simple random walk on $\\mathcal{U}$ is proved in [5] and it is also demonstrated in [8] that two independent simple random walks on $\\mathcal{U}$ collide infinitely often. In this article, we will give a quantitative estimate on the number of collisions of two independent simple random walks on $\\mathcal{U}$, which provides another proof of the infinite collision property of $\\mathcal{U}$.","PeriodicalId":34218,"journal":{"name":"International Journal of Mathematics for Industry","volume":"11965 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite collision property for the three-dimensional uniform spanning tree\",\"authors\":\"Satomi Watanabe\",\"doi\":\"10.1142/s2661335223500053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{U}$ be the uniform spanning tree on $\\\\mathbb{Z}^3$, whose probability law is denoted by $\\\\mathbf{P}$. For $\\\\mathbf{P}$-a.s. realization of $\\\\mathcal{U}$, the recurrence of the the simple random walk on $\\\\mathcal{U}$ is proved in [5] and it is also demonstrated in [8] that two independent simple random walks on $\\\\mathcal{U}$ collide infinitely often. In this article, we will give a quantitative estimate on the number of collisions of two independent simple random walks on $\\\\mathcal{U}$, which provides another proof of the infinite collision property of $\\\\mathcal{U}$.\",\"PeriodicalId\":34218,\"journal\":{\"name\":\"International Journal of Mathematics for Industry\",\"volume\":\"11965 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics for Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2661335223500053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics for Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2661335223500053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设$\mathcal{U}$为$\mathbb{Z}^3$上的一致生成树,其概率律用$\mathbf{P}$表示。美元\ mathbf {P}主导者——美元。$\mathcal{U}$的实现,在[5]中证明了$\mathcal{U}$上的简单随机游动的递推性,并在[8]中证明了$\mathcal{U}$上的两个独立的简单随机游动经常无限碰撞。本文将给出$\mathcal{U}$上两个独立简单随机漫步的碰撞次数的定量估计,这再次证明了$\mathcal{U}$的无限碰撞性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite collision property for the three-dimensional uniform spanning tree
Let $\mathcal{U}$ be the uniform spanning tree on $\mathbb{Z}^3$, whose probability law is denoted by $\mathbf{P}$. For $\mathbf{P}$-a.s. realization of $\mathcal{U}$, the recurrence of the the simple random walk on $\mathcal{U}$ is proved in [5] and it is also demonstrated in [8] that two independent simple random walks on $\mathcal{U}$ collide infinitely often. In this article, we will give a quantitative estimate on the number of collisions of two independent simple random walks on $\mathcal{U}$, which provides another proof of the infinite collision property of $\mathcal{U}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信