B. Delcaillau, O. Dugué, M. Namous, K. Pedoja, M. Amrhar, E. Laville
{"title":"Ourika流域(摩洛哥马拉喀什高地图集)更新世流质沉积物:与基准面变化有关的气候变化指标","authors":"B. Delcaillau, O. Dugué, M. Namous, K. Pedoja, M. Amrhar, E. Laville","doi":"10.1127/ZFG/2016/0261","DOIUrl":null,"url":null,"abstract":"Aggradational packages of alluvial sediment are preserved in the Ourika river basin. Field mapping and DEM analysis allowed us to identify a model sequence of river terraces. We focus on sites where the study of sedimentary sections allow us to decipher the sedimentary evolution of the Ourika watershed. Quaternary evolution of the drainage basin is characterized by major phases of sediment accumulation and erosion, forming alluvial fans and cut-fill terraces. More intense rainfall events during the Middle Pleistocene Ourika drainage basin resulted in increased erosion and transport of sediment from the hillslopes into the trunk river. First, the cut-fill terraces near the sub-basins outlets are formed by a large-scale aggradation, followed by a main vertical incision and lateral erosion. Then, the second sedimentation period was probably a result of increased precipitation that caused landsliding in steep sub-basins. Finally, a last stage of incision in the Ourika Valley is linked to a base level lowering due to climatic fluctuations. We suggest that cyclic climatic fluctuations superimposed on a continuous uplift of the High Atlas are responsible for the generation of stepped terraces along the Ourika River. Sub-basins steep affected by erosion processes dominated by landslides rocky shallow were accompanied by debris flows along convex profiles at their downstream end and associated with steep knickpoints. We interpreted erosion of the Pleistocene deposits as the result of an autocyclic negative feedback such as exhaustion of the hillslope sediment stocks and the resulting increase of the relative capacity of the trunk stream to bring and transfer sediment towards the Ourika Valley.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pleistocene fluviatile deposits in the Ourika drainage basin (Marrakech High Atlas, Morocco): indicators of climatic variations associated with base level change\",\"authors\":\"B. Delcaillau, O. Dugué, M. Namous, K. Pedoja, M. Amrhar, E. Laville\",\"doi\":\"10.1127/ZFG/2016/0261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggradational packages of alluvial sediment are preserved in the Ourika river basin. Field mapping and DEM analysis allowed us to identify a model sequence of river terraces. We focus on sites where the study of sedimentary sections allow us to decipher the sedimentary evolution of the Ourika watershed. Quaternary evolution of the drainage basin is characterized by major phases of sediment accumulation and erosion, forming alluvial fans and cut-fill terraces. More intense rainfall events during the Middle Pleistocene Ourika drainage basin resulted in increased erosion and transport of sediment from the hillslopes into the trunk river. First, the cut-fill terraces near the sub-basins outlets are formed by a large-scale aggradation, followed by a main vertical incision and lateral erosion. Then, the second sedimentation period was probably a result of increased precipitation that caused landsliding in steep sub-basins. Finally, a last stage of incision in the Ourika Valley is linked to a base level lowering due to climatic fluctuations. We suggest that cyclic climatic fluctuations superimposed on a continuous uplift of the High Atlas are responsible for the generation of stepped terraces along the Ourika River. Sub-basins steep affected by erosion processes dominated by landslides rocky shallow were accompanied by debris flows along convex profiles at their downstream end and associated with steep knickpoints. We interpreted erosion of the Pleistocene deposits as the result of an autocyclic negative feedback such as exhaustion of the hillslope sediment stocks and the resulting increase of the relative capacity of the trunk stream to bring and transfer sediment towards the Ourika Valley.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1127/ZFG/2016/0261\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1127/ZFG/2016/0261","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pleistocene fluviatile deposits in the Ourika drainage basin (Marrakech High Atlas, Morocco): indicators of climatic variations associated with base level change
Aggradational packages of alluvial sediment are preserved in the Ourika river basin. Field mapping and DEM analysis allowed us to identify a model sequence of river terraces. We focus on sites where the study of sedimentary sections allow us to decipher the sedimentary evolution of the Ourika watershed. Quaternary evolution of the drainage basin is characterized by major phases of sediment accumulation and erosion, forming alluvial fans and cut-fill terraces. More intense rainfall events during the Middle Pleistocene Ourika drainage basin resulted in increased erosion and transport of sediment from the hillslopes into the trunk river. First, the cut-fill terraces near the sub-basins outlets are formed by a large-scale aggradation, followed by a main vertical incision and lateral erosion. Then, the second sedimentation period was probably a result of increased precipitation that caused landsliding in steep sub-basins. Finally, a last stage of incision in the Ourika Valley is linked to a base level lowering due to climatic fluctuations. We suggest that cyclic climatic fluctuations superimposed on a continuous uplift of the High Atlas are responsible for the generation of stepped terraces along the Ourika River. Sub-basins steep affected by erosion processes dominated by landslides rocky shallow were accompanied by debris flows along convex profiles at their downstream end and associated with steep knickpoints. We interpreted erosion of the Pleistocene deposits as the result of an autocyclic negative feedback such as exhaustion of the hillslope sediment stocks and the resulting increase of the relative capacity of the trunk stream to bring and transfer sediment towards the Ourika Valley.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.